
MongoEngine Documentation
Release 0.8.0

Ross Lawley

January 14, 2016

Contents

1 Community 3

2 Contributing 5

3 Changes 7

4 Offline Reading 9
4.1 Tutorial . 9
4.2 User Guide . 13
4.3 API Reference . 38
4.4 Changelog . 54
4.5 Upgrading . 67
4.6 Django Support . 74

5 Indices and tables 77

i

ii

MongoEngine Documentation, Release 0.8.0

MongoEngine is an Object-Document Mapper, written in Python for working with MongoDB. To install it, simply
run

$ pip install -U mongoengine

Tutorial A quick tutorial building a tumblelog to get you up and running with MongoEngine.

User Guide The Full guide to MongoEngine - from modeling documents to storing files, from querying for data
to firing signals and everything between.

API Reference The complete API documentation — the innards of documents, querysets and fields.

Upgrading How to upgrade MongoEngine.

Django Support Using MongoEngine and Django

Contents 1

MongoEngine Documentation, Release 0.8.0

2 Contents

CHAPTER 1

Community

To get help with using MongoEngine, use the MongoEngine Users mailing list or the ever popular stackoverflow.

3

http://groups.google.com/group/mongoengine-users
http://www.stackoverflow.com

MongoEngine Documentation, Release 0.8.0

4 Chapter 1. Community

CHAPTER 2

Contributing

Yes please! We are always looking for contributions, additions and improvements.

The source is available on GitHub and contributions are always encouraged. Contributions can be as simple as
minor tweaks to this documentation, the website or the core.

To contribute, fork the project on GitHub and send a pull request.

5

http://github.com/MongoEngine/mongoengine
http://github.com/MongoEngine/mongoengine

MongoEngine Documentation, Release 0.8.0

6 Chapter 2. Contributing

CHAPTER 3

Changes

See the Changelog for a full list of changes to MongoEngine and Upgrading for upgrade information.

Note: Always read and test the upgrade documentation before putting updates live in production ;)

7

MongoEngine Documentation, Release 0.8.0

8 Chapter 3. Changes

CHAPTER 4

Offline Reading

Download the docs in pdf or epub formats for offline reading.

4.1 Tutorial

This tutorial introduces MongoEngine by means of example — we will walk through how to create a simple
Tumblelog application. A Tumblelog is a type of blog where posts are not constrained to being conventional text-
based posts. As well as text-based entries, users may post images, links, videos, etc. For simplicity’s sake, we’ll
stick to text, image and link entries in our application. As the purpose of this tutorial is to introduce MongoEngine,
we’ll focus on the data-modelling side of the application, leaving out a user interface.

4.1.1 Getting started

Before we start, make sure that a copy of MongoDB is running in an accessible location — running it locally will
be easier, but if that is not an option then it may be run on a remote server. If you haven’t installed mongoengine,
simply use pip to install it like so:

$ pip install mongoengine

Before we can start using MongoEngine, we need to tell it how to connect to our instance of mongod. For this
we use the connect() function. If running locally the only argument we need to provide is the name of the
MongoDB database to use:

from mongoengine import *

connect('tumblelog')

There are lots of options for connecting to MongoDB, for more information about them see the Connecting to
MongoDB guide.

4.1.2 Defining our documents

MongoDB is schemaless, which means that no schema is enforced by the database — we may add and remove
fields however we want and MongoDB won’t complain. This makes life a lot easier in many regards, especially
when there is a change to the data model. However, defining schemata for our documents can help to iron out
bugs involving incorrect types or missing fields, and also allow us to define utility methods on our documents in
the same way that traditional ORMS (Object-Relational Mappers) do.

In our Tumblelog application we need to store several different types of information. We will need to have a
collection of users, so that we may link posts to an individual. We also need to store our different types of posts
(eg: text, image and link) in the database. To aid navigation of our Tumblelog, posts may have tags associated
with them, so that the list of posts shown to the user may be limited to posts that have been assigned a specific

9

https://media.readthedocs.org/pdf/mongoengine-odm/latest/mongoengine-odm.pdf
https://media.readthedocs.org/epub/mongoengine-odm/latest/mongoengine-odm.epub

MongoEngine Documentation, Release 0.8.0

tag. Finally, it would be nice if comments could be added to posts. We’ll start with users, as the other document
models are slightly more involved.

Users

Just as if we were using a relational database with an ORM, we need to define which fields a User may have, and
what types of data they might store:

class User(Document):
email = StringField(required=True)
first_name = StringField(max_length=50)
last_name = StringField(max_length=50)

This looks similar to how a the structure of a table would be defined in a regular ORM. The key difference is that
this schema will never be passed on to MongoDB — this will only be enforced at the application level, making
future changes easy to manage. Also, the User documents will be stored in a MongoDB collection rather than a
table.

Posts, Comments and Tags

Now we’ll think about how to store the rest of the information. If we were using a relational database, we would
most likely have a table of posts, a table of comments and a table of tags. To associate the comments with
individual posts, we would put a column in the comments table that contained a foreign key to the posts table.
We’d also need a link table to provide the many-to-many relationship between posts and tags. Then we’d need to
address the problem of storing the specialised post-types (text, image and link). There are several ways we can
achieve this, but each of them have their problems — none of them stand out as particularly intuitive solutions.

Posts

Happily mongoDB isn’t a relational database, so we’re not going to do it that way. As it turns out, we can use
MongoDB’s schemaless nature to provide us with a much nicer solution. We will store all of the posts in one
collection and each post type will only store the fields it needs. If we later want to add video posts, we don’t
have to modify the collection at all, we just start using the new fields we need to support video posts. This fits
with the Object-Oriented principle of inheritance nicely. We can think of Post as a base class, and TextPost,
ImagePost and LinkPost as subclasses of Post. In fact, MongoEngine supports this kind of modelling out
of the box — all you need do is turn on inheritance by setting allow_inheritance to True in the meta:

class Post(Document):
title = StringField(max_length=120, required=True)
author = ReferenceField(User)

meta = {'allow_inheritance': True}

class TextPost(Post):
content = StringField()

class ImagePost(Post):
image_path = StringField()

class LinkPost(Post):
link_url = StringField()

We are storing a reference to the author of the posts using a ReferenceField object. These are similar to
foreign key fields in traditional ORMs, and are automatically translated into references when they are saved, and
dereferenced when they are loaded.

10 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.8.0

Tags

Now that we have our Post models figured out, how will we attach tags to them? MongoDB allows us to store
lists of items natively, so rather than having a link table, we can just store a list of tags in each post. So, for
both efficiency and simplicity’s sake, we’ll store the tags as strings directly within the post, rather than storing
references to tags in a separate collection. Especially as tags are generally very short (often even shorter than a
document’s id), this denormalisation won’t impact very strongly on the size of our database. So let’s take a look
that the code our modified Post class:

class Post(Document):
title = StringField(max_length=120, required=True)
author = ReferenceField(User)
tags = ListField(StringField(max_length=30))

The ListField object that is used to define a Post’s tags takes a field object as its first argument — this means
that you can have lists of any type of field (including lists).

Note: We don’t need to modify the specialised post types as they all inherit from Post.

Comments

A comment is typically associated with one post. In a relational database, to display a post with its comments, we
would have to retrieve the post from the database, then query the database again for the comments associated with
the post. This works, but there is no real reason to be storing the comments separately from their associated posts,
other than to work around the relational model. Using MongoDB we can store the comments as a list of embedded
documents directly on a post document. An embedded document should be treated no differently that a regular
document; it just doesn’t have its own collection in the database. Using MongoEngine, we can define the structure
of embedded documents, along with utility methods, in exactly the same way we do with regular documents:

class Comment(EmbeddedDocument):
content = StringField()
name = StringField(max_length=120)

We can then store a list of comment documents in our post document:

class Post(Document):
title = StringField(max_length=120, required=True)
author = ReferenceField(User)
tags = ListField(StringField(max_length=30))
comments = ListField(EmbeddedDocumentField(Comment))

Handling deletions of references

The ReferenceField object takes a keyword reverse_delete_rule for handling deletion rules if the reference
is deleted. To delete all the posts if a user is deleted set the rule:

class Post(Document):
title = StringField(max_length=120, required=True)
author = ReferenceField(User, reverse_delete_rule=CASCADE)
tags = ListField(StringField(max_length=30))
comments = ListField(EmbeddedDocumentField(Comment))

See ReferenceField for more information.

Note: MapFields and DictFields currently don’t support automatic handling of deleted references

4.1. Tutorial 11

MongoEngine Documentation, Release 0.8.0

4.1.3 Adding data to our Tumblelog

Now that we’ve defined how our documents will be structured, let’s start adding some documents to the database.
Firstly, we’ll need to create a User object:

ross = User(email='ross@example.com', first_name='Ross', last_name='Lawley').save()

Note: We could have also defined our user using attribute syntax:

ross = User(email='ross@example.com')
ross.first_name = 'Ross'
ross.last_name = 'Lawley'
ross.save()

Now that we’ve got our user in the database, let’s add a couple of posts:

post1 = TextPost(title='Fun with MongoEngine', author=john)
post1.content = 'Took a look at MongoEngine today, looks pretty cool.'
post1.tags = ['mongodb', 'mongoengine']
post1.save()

post2 = LinkPost(title='MongoEngine Documentation', author=ross)
post2.link_url = 'http://docs.mongoengine.com/'
post2.tags = ['mongoengine']
post2.save()

Note: If you change a field on a object that has already been saved, then call save() again, the document will
be updated.

4.1.4 Accessing our data

So now we’ve got a couple of posts in our database, how do we display them? Each document class (i.e. any class
that inherits either directly or indirectly from Document) has an objects attribute, which is used to access the
documents in the database collection associated with that class. So let’s see how we can get our posts’ titles:

for post in Post.objects:
print post.title

Retrieving type-specific information

This will print the titles of our posts, one on each line. But What if we want to access the type-specific data
(link_url, content, etc.)? One way is simply to use the objects attribute of a subclass of Post:

for post in TextPost.objects:
print post.content

Using TextPost’s objects attribute only returns documents that were created using TextPost. Actually, there
is a more general rule here: the objects attribute of any subclass of Document only looks for documents that
were created using that subclass or one of its subclasses.

So how would we display all of our posts, showing only the information that corresponds to each post’s specific
type? There is a better way than just using each of the subclasses individually. When we used Post‘s objects
attribute earlier, the objects being returned weren’t actually instances of Post — they were instances of the
subclass of Post that matches the post’s type. Let’s look at how this works in practice:

for post in Post.objects:
print post.title
print '=' * len(post.title)

12 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.8.0

if isinstance(post, TextPost):
print post.content

if isinstance(post, LinkPost):
print 'Link:', post.link_url

print

This would print the title of each post, followed by the content if it was a text post, and “Link: <url>” if it was a
link post.

Searching our posts by tag

The objects attribute of a Document is actually a QuerySet object. This lazily queries the database only
when you need the data. It may also be filtered to narrow down your query. Let’s adjust our query so that only
posts with the tag “mongodb” are returned:

for post in Post.objects(tags='mongodb'):
print post.title

There are also methods available on QuerySet objects that allow different results to be returned, for example,
calling first() on the objects attribute will return a single document, the first matched by the query you
provide. Aggregation functions may also be used on QuerySet objects:

num_posts = Post.objects(tags='mongodb').count()
print 'Found %d posts with tag "mongodb"' % num_posts

Learning more about mongoengine

If you got this far you’ve made a great start, so well done! The next step on your mongoengine journey is the full
user guide, where you can learn indepth about how to use mongoengine and mongodb.

4.2 User Guide

4.2.1 Installing MongoEngine

To use MongoEngine, you will need to download MongoDB and ensure it is running in an accessible location.
You will also need PyMongo to use MongoEngine, but if you install MongoEngine using setuptools, then the
dependencies will be handled for you.

MongoEngine is available on PyPI, so to use it you can use pip:

$ pip install mongoengine

Alternatively, if you don’t have setuptools installed, download it from PyPi and run

$ python setup.py install

To use the bleeding-edge version of MongoEngine, you can get the source from GitHub and install it as above:

$ git clone git://github.com/mongoengine/mongoengine
$ cd mongoengine
$ python setup.py install

4.2. User Guide 13

http://mongodb.org/
http://api.mongodb.org/python
http://pypi.python.org/pypi/mongoengine/
http://github.com/mongoengine/mongoengine/

MongoEngine Documentation, Release 0.8.0

4.2.2 Connecting to MongoDB

To connect to a running instance of mongod, use the connect() function. The first argument is the name of
the database to connect to:

from mongoengine import connect
connect('project1')

By default, MongoEngine assumes that the mongod instance is running on localhost on port 27017. If MongoDB
is running elsewhere, you should provide the host and port arguments to connect():

connect('project1', host='192.168.1.35', port=12345)

If the database requires authentication, username and password arguments should be provided:

connect('project1', username='webapp', password='pwd123')

Uri style connections are also supported as long as you include the database name - just supply the uri as the host
to connect():

connect('project1', host='mongodb://localhost/database_name')

ReplicaSets

MongoEngine supports MongoReplicaSetClient to use them please use a URI style connection and provide
the replicaSet name in the connection kwargs.

Read preferences are supported throught the connection or via individual queries by passing the read_preference

Bar.objects().read_preference(ReadPreference.PRIMARY)
Bar.objects(read_preference=ReadPreference.PRIMARY)

Multiple Databases

Multiple database support was added in MongoEngine 0.6. To use multiple databases you can use connect()
and provide an alias name for the connection - if no alias is provided then “default” is used.

In the background this uses register_connection() to store the data and you can register all aliases up
front if required.

Individual documents can also support multiple databases by providing a db_alias in their meta data. This allows
DBRef objects to point across databases and collections. Below is an example schema, using 3 different databases
to store data:

class User(Document):
name = StringField()

meta = {"db_alias": "user-db"}

class Book(Document):
name = StringField()

meta = {"db_alias": "book-db"}

class AuthorBooks(Document):
author = ReferenceField(User)
book = ReferenceField(Book)

meta = {"db_alias": "users-books-db"}

14 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.8.0

Switch Database Context Manager

Sometimes you may want to switch the database to query against for a class for example, archiving older data into
a separate database for performance reasons.

The switch_db context manager allows you to change the database alias for a given class allowing quick and
easy access to the same User document across databases.eg

from mongoengine.context_managers import switch_db

class User(Document):
name = StringField()

meta = {"db_alias": "user-db"}

with switch_db(User, 'archive-user-db') as User:
User(name="Ross").save() # Saves the 'archive-user-db'

Note: Make sure any aliases have been registered with register_connection() before using the context
manager.

4.2.3 Defining documents

In MongoDB, a document is roughly equivalent to a row in an RDBMS. When working with relational databases,
rows are stored in tables, which have a strict schema that the rows follow. MongoDB stores documents in
collections rather than tables - the principle difference is that no schema is enforced at a database level.

Defining a document’s schema

MongoEngine allows you to define schemata for documents as this helps to reduce coding errors, and allows for
utility methods to be defined on fields which may be present.

To define a schema for a document, create a class that inherits from Document. Fields are specified by adding
field objects as class attributes to the document class:

from mongoengine import *
import datetime

class Page(Document):
title = StringField(max_length=200, required=True)
date_modified = DateTimeField(default=datetime.datetime.now)

As BSON (the binary format for storing data in mongodb) is order dependent, documents are serialized based on
their field order.

Dynamic document schemas

One of the benefits of MongoDb is dynamic schemas for a collection, whilst data should be planned and organised
(after all explicit is better than implicit!) there are scenarios where having dynamic / expando style documents is
desirable.

DynamicDocument documents work in the same way as Document but any data / attributes set to them will
also be saved

from mongoengine import *

class Page(DynamicDocument):
title = StringField(max_length=200, required=True)

4.2. User Guide 15

MongoEngine Documentation, Release 0.8.0

Create a new page and add tags
>>> page = Page(title='Using MongoEngine')
>>> page.tags = ['mongodb', 'mongoengine']
>>> page.save()

>>> Page.objects(tags='mongoengine').count()
>>> 1

Note: There is one caveat on Dynamic Documents: fields cannot start with _

Dynamic fields are stored in alphabetical order after any declared fields.

Fields

By default, fields are not required. To make a field mandatory, set the required keyword argument of a field
to True. Fields also may have validation constraints available (such as max_length in the example above).
Fields may also take default values, which will be used if a value is not provided. Default values may optionally
be a callable, which will be called to retrieve the value (such as in the above example). The field types available
are as follows:

• BinaryField

• BooleanField

• ComplexDateTimeField

• DateTimeField

• DecimalField

• DictField

• DynamicField

• EmailField

• EmbeddedDocumentField

• FileField

• FloatField

• GenericEmbeddedDocumentField

• GenericReferenceField

• GeoPointField

• ImageField

• IntField

• ListField

• MapField

• ObjectIdField

• ReferenceField

• SequenceField

• SortedListField

• StringField

• URLField

• UUIDField

16 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.8.0

Field arguments

Each field type can be customized by keyword arguments. The following keyword arguments can be set on all
fields:

db_field (Default: None) The MongoDB field name.

name (Default: None) The mongoengine field name.

required (Default: False) If set to True and the field is not set on the document instance, a
ValidationError will be raised when the document is validated.

default (Default: None) A value to use when no value is set for this field.

The definion of default parameters follow the general rules on Python, which means that some care should
be taken when dealing with default mutable objects (like in ListField or DictField):

class ExampleFirst(Document):
Default an empty list
values = ListField(IntField(), default=list)

class ExampleSecond(Document):
Default a set of values
values = ListField(IntField(), default=lambda: [1,2,3])

class ExampleDangerous(Document):
This can make an .append call to add values to the default (and all the following objects),
instead to just an object
values = ListField(IntField(), default=[1,2,3])

unique (Default: False) When True, no documents in the collection will have the same value for this field.

unique_with (Default: None) A field name (or list of field names) that when taken together with this field,
will not have two documents in the collection with the same value.

primary_key (Default: False) When True, use this field as a primary key for the collection. DictField and
EmbeddedDocuments both support being the primary key for a document.

choices (Default: None) An iterable (e.g. a list or tuple) of choices to which the value of this field should be
limited.

Can be either be a nested tuples of value (stored in mongo) and a human readable key

SIZE = (('S', 'Small'),
('M', 'Medium'),
('L', 'Large'),
('XL', 'Extra Large'),
('XXL', 'Extra Extra Large'))

class Shirt(Document):
size = StringField(max_length=3, choices=SIZE)

Or a flat iterable just containing values

SIZE = ('S', 'M', 'L', 'XL', 'XXL')

class Shirt(Document):
size = StringField(max_length=3, choices=SIZE)

help_text (Default: None) Optional help text to output with the field - used by form libraries

verbose_name (Default: None) Optional human-readable name for the field - used by form libraries

4.2. User Guide 17

http://docs.python.org/reference/compound_stmts.html#function-definitions

MongoEngine Documentation, Release 0.8.0

List fields

MongoDB allows the storage of lists of items. To add a list of items to a Document, use the ListField field
type. ListField takes another field object as its first argument, which specifies which type elements may be
stored within the list:

class Page(Document):
tags = ListField(StringField(max_length=50))

Embedded documents

MongoDB has the ability to embed documents within other documents. Schemata may be defined for these
embedded documents, just as they may be for regular documents. To create an embedded document, just define a
document as usual, but inherit from EmbeddedDocument rather than Document:

class Comment(EmbeddedDocument):
content = StringField()

To embed the document within another document, use the EmbeddedDocumentField field type, providing
the embedded document class as the first argument:

class Page(Document):
comments = ListField(EmbeddedDocumentField(Comment))

comment1 = Comment(content='Good work!')
comment2 = Comment(content='Nice article!')
page = Page(comments=[comment1, comment2])

Dictionary Fields

Often, an embedded document may be used instead of a dictionary – generally this is recommended as dictionaries
don’t support validation or custom field types. However, sometimes you will not know the structure of what you
want to store; in this situation a DictField is appropriate:

class SurveyResponse(Document):
date = DateTimeField()
user = ReferenceField(User)
answers = DictField()

survey_response = SurveyResponse(date=datetime.now(), user=request.user)
response_form = ResponseForm(request.POST)
survey_response.answers = response_form.cleaned_data()
survey_response.save()

Dictionaries can store complex data, other dictionaries, lists, references to other objects, so are the most flexible
field type available.

Reference fields

References may be stored to other documents in the database using the ReferenceField. Pass in another
document class as the first argument to the constructor, then simply assign document objects to the field:

class User(Document):
name = StringField()

class Page(Document):
content = StringField()
author = ReferenceField(User)

18 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.8.0

john = User(name="John Smith")
john.save()

post = Page(content="Test Page")
post.author = john
post.save()

The User object is automatically turned into a reference behind the scenes, and dereferenced when the Page
object is retrieved.

To add a ReferenceField that references the document being defined, use the string ’self’ in place of the
document class as the argument to ReferenceField‘s constructor. To reference a document that has not yet
been defined, use the name of the undefined document as the constructor’s argument:

class Employee(Document):
name = StringField()
boss = ReferenceField('self')
profile_page = ReferenceField('ProfilePage')

class ProfilePage(Document):
content = StringField()

One to Many with ListFields If you are implementing a one to many relationship via a list of references, then
the references are stored as DBRefs and to query you need to pass an instance of the object to the query:

class User(Document):
name = StringField()

class Page(Document):
content = StringField()
authors = ListField(ReferenceField(User))

bob = User(name="Bob Jones").save()
john = User(name="John Smith").save()

Page(content="Test Page", authors=[bob, john]).save()
Page(content="Another Page", authors=[john]).save()

Find all pages Bob authored
Page.objects(authors__in=[bob])

Find all pages that both Bob and John have authored
Page.objects(authors__all=[bob, john])

Dealing with deletion of referred documents By default, MongoDB doesn’t check the integrity of your data,
so deleting documents that other documents still hold references to will lead to consistency issues. Mongo-
engine’s ReferenceField adds some functionality to safeguard against these kinds of database integrity
problems, providing each reference with a delete rule specification. A delete rule is specified by supplying the
reverse_delete_rule attributes on the ReferenceField definition, like this:

class Employee(Document):
...
profile_page = ReferenceField('ProfilePage', reverse_delete_rule=mongoengine.NULLIFY)

The declaration in this example means that when an Employee object is removed, the ProfilePage that
belongs to that employee is removed as well. If a whole batch of employees is removed, all profile pages that are
linked are removed as well.

Its value can take any of the following constants:

4.2. User Guide 19

MongoEngine Documentation, Release 0.8.0

mongoengine.DO_NOTHING This is the default and won’t do anything. Deletes are fast, but may cause
database inconsistency or dangling references.

mongoengine.DENY Deletion is denied if there still exist references to the object being deleted.

mongoengine.NULLIFY Any object’s fields still referring to the object being deleted are removed (using
MongoDB’s “unset” operation), effectively nullifying the relationship.

mongoengine.CASCADE Any object containing fields that are refererring to the object being deleted are
deleted first.

mongoengine.PULL Removes the reference to the object (using MongoDB’s “pull” operation) from any ob-
ject’s fields of ListField (ReferenceField).

Warning: A safety note on setting up these delete rules! Since the delete rules are not recorded on the
database level by MongoDB itself, but instead at runtime, in-memory, by the MongoEngine module, it is of
the upmost importance that the module that declares the relationship is loaded BEFORE the delete is invoked.
If, for example, the Employee object lives in the payroll app, and the ProfilePage in the people app,
it is extremely important that the people app is loaded before any employee is removed, because otherwise,
MongoEngine could never know this relationship exists.
In Django, be sure to put all apps that have such delete rule declarations in their models.py in the
INSTALLED_APPS tuple.

Warning: Signals are not triggered when doing cascading updates / deletes - if this is required you must
manually handle the update / delete.

Generic reference fields A second kind of reference field also exists, GenericReferenceField. This
allows you to reference any kind of Document, and hence doesn’t take a Document subclass as a constructor
argument:

class Link(Document):
url = StringField()

class Post(Document):
title = StringField()

class Bookmark(Document):
bookmark_object = GenericReferenceField()

link = Link(url='http://hmarr.com/mongoengine/')
link.save()

post = Post(title='Using MongoEngine')
post.save()

Bookmark(bookmark_object=link).save()
Bookmark(bookmark_object=post).save()

Note: Using GenericReferenceFields is slightly less efficient than the standard ReferenceFields,
so if you will only be referencing one document type, prefer the standard ReferenceField.

Uniqueness constraints

MongoEngine allows you to specify that a field should be unique across a collection by providing unique=True
to a Field‘s constructor. If you try to save a document that has the same value for a unique field as a document
that is already in the database, a OperationError will be raised. You may also specify multi-field uniqueness
constraints by using unique_with, which may be either a single field name, or a list or tuple of field names:

20 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.8.0

class User(Document):
username = StringField(unique=True)
first_name = StringField()
last_name = StringField(unique_with='first_name')

Skipping Document validation on save

You can also skip the whole document validation process by setting validate=Falsewhen caling the save()
method:

class Recipient(Document):
name = StringField()
email = EmailField()

recipient = Recipient(name='admin', email='root@localhost')
recipient.save() # will raise a ValidationError while
recipient.save(validate=False) # won't

Document collections

Document classes that inherit directly from Document will have their own collection in the database. The name
of the collection is by default the name of the class, coverted to lowercase (so in the example above, the collection
would be called page). If you need to change the name of the collection (e.g. to use MongoEngine with an existing
database), then create a class dictionary attribute called meta on your document, and set collection to the
name of the collection that you want your document class to use:

class Page(Document):
title = StringField(max_length=200, required=True)
meta = {'collection': 'cmsPage'}

Capped collections

A Document may use a Capped Collection by specifying max_documents and max_size in the meta
dictionary. max_documents is the maximum number of documents that is allowed to be stored in the col-
lection, and max_size is the maximum size of the collection in bytes. If max_size is not specified and
max_documents is, max_size defaults to 10000000 bytes (10MB). The following example shows a Log
document that will be limited to 1000 entries and 2MB of disk space:

class Log(Document):
ip_address = StringField()
meta = {'max_documents': 1000, 'max_size': 2000000}

Indexes

You can specify indexes on collections to make querying faster. This is done by creating a list of index specifi-
cations called indexes in the meta dictionary, where an index specification may either be a single field name,
a tuple containing multiple field names, or a dictionary containing a full index definition. A direction may be
specified on fields by prefixing the field name with a + or a - sign. Note that direction only matters on multi-field
indexes.

class Page(Document):
title = StringField()
rating = StringField()
meta = {

'indexes': ['title', ('title', '-rating')]
}

4.2. User Guide 21

MongoEngine Documentation, Release 0.8.0

If a dictionary is passed then the following options are available:

fields (Default: None) The fields to index. Specified in the same format as described above.

cls (Default: True) If you have polymorphic models that inherit and have allow_inheritance turned on,
you can configure whether the index should have the _cls field added automatically to the start of the
index.

sparse (Default: False) Whether the index should be sparse.

unique (Default: False) Whether the index should be unique.

expireAfterSeconds (Optional) Allows you to automatically expire data from a collection by setting the
time in seconds to expire the a field.

Note: Inheritance adds extra fields indices see: Document inheritance.

Compound Indexes and Indexing sub documents

Compound indexes can be created by adding the Embedded field or dictionary field name to the index definition.

Sometimes its more efficient to index parts of Embedded / dictionary fields, in this case use ‘dot’ notation to
identify the value to index eg: rank.title

Geospatial indexes

The best geo index for mongodb is the new “2dsphere”, which has an improved spherical model and provides
better performance and more options when querying. The following fields will explicitly add a “2dsphere” index:

• PointField

• LineStringField

• PolygonField

As “2dsphere” indexes can be part of a compound index, you may not want the automatic index but would pre-
fer a compound index. In this example we turn off auto indexing and explicitly declare a compound index on
location and datetime:

class Log(Document):
location = PointField(auto_index=False)
datetime = DateTimeField()

meta = {
'indexes': [[("location", "2dsphere"), ("datetime", 1)]]

}

Pre MongoDB 2.4 Geo
Note: For MongoDB < 2.4 this is still current, however the new 2dsphere index is a big improvement over the
previous 2D model - so upgrading is advised.

Geospatial indexes will be automatically created for all GeoPointFields

It is also possible to explicitly define geospatial indexes. This is useful if you need to define a geospatial index on
a subfield of a DictField or a custom field that contains a point. To create a geospatial index you must prefix
the field with the * sign.

class Place(Document):
location = DictField()
meta = {

'indexes': [
'*location.point',

22 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.8.0

],
}

Time To Live indexes

A special index type that allows you to automatically expire data from a collection after a given period. See the
official ttl documentation for more information. A common usecase might be session data:

class Session(Document):
created = DateTimeField(default=datetime.now)
meta = {

'indexes': [
{'fields': ['created'], 'expireAfterSeconds': 3600}

]
}

Ordering

A default ordering can be specified for your QuerySet using the ordering attribute of meta. Ordering will
be applied when the QuerySet is created, and can be overridden by subsequent calls to order_by().

from datetime import datetime

class BlogPost(Document):
title = StringField()
published_date = DateTimeField()

meta = {
'ordering': ['-published_date']

}

blog_post_1 = BlogPost(title="Blog Post #1")
blog_post_1.published_date = datetime(2010, 1, 5, 0, 0 ,0)

blog_post_2 = BlogPost(title="Blog Post #2")
blog_post_2.published_date = datetime(2010, 1, 6, 0, 0 ,0)

blog_post_3 = BlogPost(title="Blog Post #3")
blog_post_3.published_date = datetime(2010, 1, 7, 0, 0 ,0)

blog_post_1.save()
blog_post_2.save()
blog_post_3.save()

get the "first" BlogPost using default ordering
from BlogPost.meta.ordering
latest_post = BlogPost.objects.first()
assert latest_post.title == "Blog Post #3"

override default ordering, order BlogPosts by "published_date"
first_post = BlogPost.objects.order_by("+published_date").first()
assert first_post.title == "Blog Post #1"

Shard keys

If your collection is sharded, then you need to specify the shard key as a tuple, using the shard_key attribute
of -mongoengine.Document.meta. This ensures that the shard key is sent with the query when calling the
save() or update() method on an existing -mongoengine.Document instance:

4.2. User Guide 23

http://docs.mongodb.org/manual/tutorial/expire-data/#expire-data-from-collections-by-setting-ttl

MongoEngine Documentation, Release 0.8.0

class LogEntry(Document):
machine = StringField()
app = StringField()
timestamp = DateTimeField()
data = StringField()

meta = {
'shard_key': ('machine', 'timestamp',)

}

Document inheritance

To create a specialised type of a Document you have defined, you may subclass it and add any extra fields or
methods you may need. As this is new class is not a direct subclass of Document, it will not be stored in its
own collection; it will use the same collection as its superclass uses. This allows for more convenient and efficient
retrieval of related documents - all you need do is set allow_inheritance to True in the meta data for a
document.:

Stored in a collection named 'page'
class Page(Document):

title = StringField(max_length=200, required=True)

meta = {'allow_inheritance': True}

Also stored in the collection named 'page'
class DatedPage(Page):

date = DateTimeField()

Note: From 0.8 onwards you must declare allow_inheritance defaults to False, meaning you must set it
to True to use inheritance.

Working with existing data

As MongoEngine no longer defaults to needing _cls you can quickly and easily get working with existing data.
Just define the document to match the expected schema in your database

Will work with data in an existing collection named 'cmsPage'
class Page(Document):

title = StringField(max_length=200, required=True)
meta = {

'collection': 'cmsPage'
}

If you have wildly varying schemas then using a DynamicDocument might be more appropriate, instead of
defining all possible field types.

If you use Document and the database contains data that isn’t defined then that data will be stored in the docu-
ment._data dictionary.

4.2.4 Documents instances

To create a new document object, create an instance of the relevant document class, providing values for its fields
as its constructor keyword arguments. You may provide values for any of the fields on the document:

>>> page = Page(title="Test Page")
>>> page.title
'Test Page'

24 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.8.0

You may also assign values to the document’s fields using standard object attribute syntax:

>>> page.title = "Example Page"
>>> page.title
'Example Page'

Saving and deleting documents

MongoEngine tracks changes to documents to provide efficient saving. To save the document to the database, call
the save() method. If the document does not exist in the database, it will be created. If it does already exist,
then any changes will be updated atomically. For example:

>>> page = Page(title="Test Page")
>>> page.save() # Performs an insert
>>> page.title = "My Page"
>>> page.save() # Performs an atomic set on the title field.

Note: Changes to documents are tracked and on the whole perform set operations.

• list_field.push(0) - sets the resulting list

• del(list_field) - unsets whole list

With lists its preferable to use Doc.update(push__list_field=0) as this stops the whole list being
updated - stopping any race conditions.

See also:

Atomic updates

Pre save data validation and cleaning

MongoEngine allows you to create custom cleaning rules for your documents when calling save(). By providing
a custom clean() method you can do any pre validation / data cleaning.

This might be useful if you want to ensure a default value based on other document values for example:

class Essay(Document):
status = StringField(choices=('Published', 'Draft'), required=True)
pub_date = DateTimeField()

def clean(self):
"""Ensures that only published essays have a `pub_date` and
automatically sets the pub_date if published and not set"""
if self.status == 'Draft' and self.pub_date is not None:

msg = 'Draft entries should not have a publication date.'
raise ValidationError(msg)

Set the pub_date for published items if not set.
if self.status == 'Published' and self.pub_date is None:

self.pub_date = datetime.now()

Note: Cleaning is only called if validation is turned on and when calling save().

Cascading Saves

If your document contains ReferenceField or GenericReferenceField objects, then by default the
save() method will not save any changes to those objects. If you want all references to also be saved also,
noting each save is a separate query, then passing cascade as True to the save method will cascade any saves.

4.2. User Guide 25

MongoEngine Documentation, Release 0.8.0

Deleting documents

To delete a document, call the delete() method. Note that this will only work if the document exists in the
database and has a valid id.

Document IDs

Each document in the database has a unique id. This may be accessed through the id attribute on Document
objects. Usually, the id will be generated automatically by the database server when the object is save, meaning
that you may only access the id field once a document has been saved:

>>> page = Page(title="Test Page")
>>> page.id
>>> page.save()
>>> page.id
ObjectId('123456789abcdef000000000')

Alternatively, you may define one of your own fields to be the document’s “primary key” by providing
primary_key=True as a keyword argument to a field’s constructor. Under the hood, MongoEngine will use
this field as the id; in fact id is actually aliased to your primary key field so you may still use id to access the
primary key if you want:

>>> class User(Document):
... email = StringField(primary_key=True)
... name = StringField()
...
>>> bob = User(email='bob@example.com', name='Bob')
>>> bob.save()
>>> bob.id == bob.email == 'bob@example.com'
True

You can also access the document’s “primary key” using the pk field; in is an alias to id:

>>> page = Page(title="Another Test Page")
>>> page.save()
>>> page.id == page.pk

Note: If you define your own primary key field, the field implicitly becomes required, so a ValidationError
will be thrown if you don’t provide it.

4.2.5 Querying the database

Document classes have an objects attribute, which is used for accessing the objects in the database associated
with the class. The objects attribute is actually a QuerySetManager, which creates and returns a new
QuerySet object on access. The QuerySet object may be iterated over to fetch documents from the database:

Prints out the names of all the users in the database
for user in User.objects:

print user.name

Note: Once the iteration finishes (when StopIteration is raised), rewind() will be called so that the
QuerySet may be iterated over again. The results of the first iteration are not cached, so the database will be hit
each time the QuerySet is iterated over.

26 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.8.0

Filtering queries

The query may be filtered by calling the QuerySet object with field lookup keyword arguments. The keys in the
keyword arguments correspond to fields on the Document you are querying:

This will return a QuerySet that will only iterate over users whose
'country' field is set to 'uk'
uk_users = User.objects(country='uk')

Fields on embedded documents may also be referred to using field lookup syntax by using a double-underscore in
place of the dot in object attribute access syntax:

This will return a QuerySet that will only iterate over pages that have
been written by a user whose 'country' field is set to 'uk'
uk_pages = Page.objects(author__country='uk')

Query operators

Operators other than equality may also be used in queries; just attach the operator name to a key with a double-
underscore:

Only find users whose age is 18 or less
young_users = Users.objects(age__lte=18)

Available operators are as follows:

• ne – not equal to

• lt – less than

• lte – less than or equal to

• gt – greater than

• gte – greater than or equal to

• not – negate a standard check, may be used before other operators (e.g. Q(age__not__mod=5))

• in – value is in list (a list of values should be provided)

• nin – value is not in list (a list of values should be provided)

• mod – value % x == y, where x and y are two provided values

• all – every item in list of values provided is in array

• size – the size of the array is

• exists – value for field exists

String queries

The following operators are available as shortcuts to querying with regular expressions:

• exact – string field exactly matches value

• iexact – string field exactly matches value (case insensitive)

• contains – string field contains value

• icontains – string field contains value (case insensitive)

• startswith – string field starts with value

• istartswith – string field starts with value (case insensitive)

• endswith – string field ends with value

4.2. User Guide 27

MongoEngine Documentation, Release 0.8.0

• iendswith – string field ends with value (case insensitive)

• match – performs an $elemMatch so you can match an entire document within an array

Geo queries

There are a few special operators for performing geographical queries. The following were added in 0.8 for:
PointField, LineStringField and PolygonField:

• geo_within – Check if a geometry is within a polygon. For ease of use it accepts either a geojson ge-
ometry or just the polygon coordinates eg:

loc.objects(point__geo_with=[[[40, 5], [40, 6], [41, 6], [40, 5]]])
loc.objects(point__geo_with={"type": "Polygon",

"coordinates": [[[40, 5], [40, 6], [41, 6], [40, 5]]]})

• geo_within_box - simplified geo_within searching with a box eg:

loc.objects(point__geo_within_box=[(-125.0, 35.0), (-100.0, 40.0)])
loc.objects(point__geo_within_box=[<bottom left coordinates>, <upper right coordinates>])

• geo_within_polygon – simplified geo_within searching within a simple polygon eg:

loc.objects(point__geo_within_polygon=[[40, 5], [40, 6], [41, 6], [40, 5]])
loc.objects(point__geo_within_polygon=[[<x1> , <y1>] ,

[<x2> , <y2>] ,
[<x3> , <y3>]])

• geo_within_center – simplified geo_within the flat circle radius of a point eg:

loc.objects(point__geo_within_center=[(-125.0, 35.0), 1])
loc.objects(point__geo_within_center=[[<x>, <y>] , <radius>])

• geo_within_sphere – simplified geo_within the spherical circle radius of a point eg:

loc.objects(point__geo_within_sphere=[(-125.0, 35.0), 1])
loc.objects(point__geo_within_sphere=[[<x>, <y>] , <radius>])

• geo_intersects – selects all locations that intersect with a geometry eg:

Inferred from provided points lists:
loc.objects(poly__geo_intersects=[40, 6])
loc.objects(poly__geo_intersects=[[40, 5], [40, 6]])
loc.objects(poly__geo_intersects=[[[40, 5], [40, 6], [41, 6], [41, 5], [40, 5]]])

With geoJson style objects
loc.objects(poly__geo_intersects={"type": "Point", "coordinates": [40, 6]})
loc.objects(poly__geo_intersects={"type": "LineString",

"coordinates": [[40, 5], [40, 6]]})
loc.objects(poly__geo_intersects={"type": "Polygon",

"coordinates": [[[40, 5], [40, 6], [41, 6], [41, 5], [40, 5]]]})

• near – Find all the locations near a given point:

loc.objects(point__near=[40, 5])
loc.objects(point__near={"type": "Point", "coordinates": [40, 5]})

You can also set the maximum distance in meters as well::

loc.objects(point__near=[40, 5], point__max_distance=1000)

The older 2D indexes are still supported with the GeoPointField:

28 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.8.0

• within_distance – provide a list containing a point and a maximum distance (e.g. [(41.342, -87.653),
5])

• within_spherical_distance – Same as above but using the spherical geo model (e.g. [(41.342,
-87.653), 5/earth_radius])

• near – order the documents by how close they are to a given point

• near_sphere – Same as above but using the spherical geo model

• within_box – filter documents to those within a given bounding box (e.g. [(35.0, -125.0), (40.0, -100.0)])

• within_polygon – filter documents to those within a given polygon (e.g. [(41.91,-87.69), (41.92,-
87.68), (41.91,-87.65), (41.89,-87.65)]).

Note: Requires Mongo Server 2.0

• max_distance – can be added to your location queries to set a maximum distance.

Querying lists

On most fields, this syntax will look up documents where the field specified matches the given value exactly, but
when the field refers to a ListField, a single item may be provided, in which case lists that contain that item
will be matched:

class Page(Document):
tags = ListField(StringField())

This will match all pages that have the word 'coding' as an item in the
'tags' list
Page.objects(tags='coding')

It is possible to query by position in a list by using a numerical value as a query operator. So if you wanted to find
all pages whose first tag was db, you could use the following query:

Page.objects(tags__0='db')

If you only want to fetch part of a list eg: you want to paginate a list, then the slice operator is required:

comments - skip 5, limit 10
Page.objects.fields(slice__comments=[5, 10])

For updating documents, if you don’t know the position in a list, you can use the $ positional operator

Post.objects(comments__by="joe").update(**{'inc__comments__$__votes': 1})

However, this doesn’t map well to the syntax so you can also use a capital S instead

Post.objects(comments__by="joe").update(inc__comments__S__votes=1)

.. note:: Due to Mongo currently the $ operator only applies to the first matched item in the query.

Raw queries

It is possible to provide a raw PyMongo query as a query parameter, which will be integrated directly into the
query. This is done using the __raw__ keyword argument:

Page.objects(__raw__={'tags': 'coding'})

New in version 0.4.

4.2. User Guide 29

MongoEngine Documentation, Release 0.8.0

Limiting and skipping results

Just as with traditional ORMs, you may limit the number of results returned, or skip a number or results in you
query. limit() and skip() and methods are available on QuerySet objects, but the prefered syntax for
achieving this is using array-slicing syntax:

Only the first 5 people
users = User.objects[:5]

All except for the first 5 people
users = User.objects[5:]

5 users, starting from the 10th user found
users = User.objects[10:15]

You may also index the query to retrieve a single result. If an item at that index does not exists, an IndexError
will be raised. A shortcut for retrieving the first result and returning None if no result exists is provided
(first()):

>>> # Make sure there are no users
>>> User.drop_collection()
>>> User.objects[0]
IndexError: list index out of range
>>> User.objects.first() == None
True
>>> User(name='Test User').save()
>>> User.objects[0] == User.objects.first()
True

Retrieving unique results

To retrieve a result that should be unique in the collection, use get(). This will raise DoesNotExist if
no document matches the query, and MultipleObjectsReturned if more than one document matched the
query. These exceptions are merged into your document defintions eg: MyDoc.DoesNotExist

A variation of this method exists, get_or_create(), that will create a new document with the query arguments
if no documents match the query. An additional keyword argument, defaults may be provided, which will be
used as default values for the new document, in the case that it should need to be created:

>>> a, created = User.objects.get_or_create(name='User A', defaults={'age': 30})
>>> b, created = User.objects.get_or_create(name='User A', defaults={'age': 40})
>>> a.name == b.name and a.age == b.age
True

Default Document queries

By default, the objects objects attribute on a document returns a QuerySet that doesn’t filter the collection
– it returns all objects. This may be changed by defining a method on a document that modifies a queryset. The
method should accept two arguments – doc_cls and queryset. The first argument is the Document class
that the method is defined on (in this sense, the method is more like a classmethod() than a regular method),
and the second argument is the initial queryset. The method needs to be decorated with queryset_manager()
in order for it to be recognised.

class BlogPost(Document):
title = StringField()
date = DateTimeField()

@queryset_manager
def objects(doc_cls, queryset):

This may actually also be done by defining a default ordering for

30 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.8.0

the document, but this illustrates the use of manager methods
return queryset.order_by('-date')

You don’t need to call your method objects – you may define as many custom manager methods as you like:

class BlogPost(Document):
title = StringField()
published = BooleanField()

@queryset_manager
def live_posts(doc_cls, queryset):

return queryset.filter(published=True)

BlogPost(title='test1', published=False).save()
BlogPost(title='test2', published=True).save()
assert len(BlogPost.objects) == 2
assert len(BlogPost.live_posts()) == 1

Custom QuerySets

Should you want to add custom methods for interacting with or filtering documents, extending the QuerySet
class may be the way to go. To use a custom QuerySet class on a document, set queryset_class to the
custom class in a Documents meta dictionary:

class AwesomerQuerySet(QuerySet):

def get_awesome(self):
return self.filter(awesome=True)

class Page(Document):
meta = {'queryset_class': AwesomerQuerySet}

To call:
Page.objects.get_awesome()

New in version 0.4.

Aggregation

MongoDB provides some aggregation methods out of the box, but there are not as many as you typically get with
an RDBMS. MongoEngine provides a wrapper around the built-in methods and provides some of its own, which
are implemented as Javascript code that is executed on the database server.

Counting results

Just as with limiting and skipping results, there is a method on QuerySet objects – count(), but there is also
a more Pythonic way of achieving this:

num_users = len(User.objects)

Further aggregation

You may sum over the values of a specific field on documents using sum():

yearly_expense = Employee.objects.sum('salary')

4.2. User Guide 31

MongoEngine Documentation, Release 0.8.0

Note: If the field isn’t present on a document, that document will be ignored from the sum.

To get the average (mean) of a field on a collection of documents, use average():

mean_age = User.objects.average('age')

As MongoDB provides native lists, MongoEngine provides a helper method to get a dictionary of the frequencies
of items in lists across an entire collection – item_frequencies(). An example of its use would be generating
“tag-clouds”:

class Article(Document):
tag = ListField(StringField())

After adding some tagged articles...
tag_freqs = Article.objects.item_frequencies('tag', normalize=True)

from operator import itemgetter
top_tags = sorted(tag_freqs.items(), key=itemgetter(1), reverse=True)[:10]

Query efficiency and performance

There are a couple of methods to improve efficiency when querying, reducing the information returned by the
query or efficient dereferencing .

Retrieving a subset of fields

Sometimes a subset of fields on a Document is required, and for efficiency only these should be retrieved from
the database. This issue is especially important for MongoDB, as fields may often be extremely large (e.g. a
ListField of EmbeddedDocuments, which represent the comments on a blog post. To select only a subset
of fields, use only(), specifying the fields you want to retrieve as its arguments. Note that if fields that are not
downloaded are accessed, their default value (or None if no default value is provided) will be given:

>>> class Film(Document):
... title = StringField()
... year = IntField()
... rating = IntField(default=3)
...
>>> Film(title='The Shawshank Redemption', year=1994, rating=5).save()
>>> f = Film.objects.only('title').first()
>>> f.title
'The Shawshank Redemption'
>>> f.year # None
>>> f.rating # default value
3

Note: The exclude() is the opposite of only() if you want to exclude a field.

If you later need the missing fields, just call reload() on your document.

Getting related data

When iterating the results of ListField or DictField we automatically dereference any DBRef objects as
efficiently as possible, reducing the number the queries to mongo.

There are times when that efficiency is not enough, documents that have ReferenceField objects or
GenericReferenceField objects at the top level are expensive as the number of queries to MongoDB can
quickly rise.

32 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.8.0

To limit the number of queries use select_related() which converts the QuerySet to a list and dereferences
as efficiently as possible. By default select_related() only dereferences any references to the depth of 1
level. If you have more complicated documents and want to dereference more of the object at once then increasing
the max_depth will dereference more levels of the document.

Turning off dereferencing

Sometimes for performance reasons you don’t want to automatically dereference data. To turn off dereferencing
of the results of a query use no_dereference() on the queryset like so:

post = Post.objects.no_dereference().first()
assert(isinstance(post.author, ObjectId))

You can also turn off all dereferencing for a fixed period by using the no_dereference context manager:

with no_dereference(Post) as Post:
post = Post.objects.first()
assert(isinstance(post.author, ObjectId))

Outside the context manager dereferencing occurs.
assert(isinstance(post.author, User))

Advanced queries

Sometimes calling a QuerySet object with keyword arguments can’t fully express the query you want to use – for
example if you need to combine a number of constraints using and and or. This is made possible in MongoEngine
through the Q class. A Q object represents part of a query, and can be initialised using the same keyword-argument
syntax you use to query documents. To build a complex query, you may combine Q objects using the & (and) and
| (or) operators. To use a Q object, pass it in as the first positional argument to Document.objects when you
filter it by calling it with keyword arguments:

Get published posts
Post.objects(Q(published=True) | Q(publish_date__lte=datetime.now()))

Get top posts
Post.objects((Q(featured=True) & Q(hits__gte=1000)) | Q(hits__gte=5000))

Warning: You have to use bitwise operators. You cannot use or, and to combine queries as Q(a=a) or
Q(b=b) is not the same as Q(a=a) | Q(b=b). As Q(a=a) equates to true Q(a=a) or Q(b=b) is the
same as Q(a=a).

Atomic updates

Documents may be updated atomically by using the update_one() and update() methods on a
QuerySet(). There are several different “modifiers” that you may use with these methods:

• set – set a particular value

• unset – delete a particular value (since MongoDB v1.3+)

• inc – increment a value by a given amount

• dec – decrement a value by a given amount

• pop – remove the last item from a list

• push – append a value to a list

• push_all – append several values to a list

• pop – remove the first or last element of a list

4.2. User Guide 33

MongoEngine Documentation, Release 0.8.0

• pull – remove a value from a list

• pull_all – remove several values from a list

• add_to_set – add value to a list only if its not in the list already

The syntax for atomic updates is similar to the querying syntax, but the modifier comes before the field, not after
it:

>>> post = BlogPost(title='Test', page_views=0, tags=['database'])
>>> post.save()
>>> BlogPost.objects(id=post.id).update_one(inc__page_views=1)
>>> post.reload() # the document has been changed, so we need to reload it
>>> post.page_views
1
>>> BlogPost.objects(id=post.id).update_one(set__title='Example Post')
>>> post.reload()
>>> post.title
'Example Post'
>>> BlogPost.objects(id=post.id).update_one(push__tags='nosql')
>>> post.reload()
>>> post.tags
['database', 'nosql']

Note: In version 0.5 the save() runs atomic updates on changed documents by tracking changes to that
document.

The positional operator allows you to update list items without knowing the index position, therefore making the
update a single atomic operation. As we cannot use the $ syntax in keyword arguments it has been mapped to S:

>>> post = BlogPost(title='Test', page_views=0, tags=['database', 'mongo'])
>>> post.save()
>>> BlogPost.objects(id=post.id, tags='mongo').update(set__tags__S='mongodb')
>>> post.reload()
>>> post.tags
['database', 'mongodb']

Note: Currently only top level lists are handled, future versions of mongodb / pymongo plan to support nested
positional operators. See The $ positional operator.

Server-side javascript execution

Javascript functions may be written and sent to the server for execution. The result of this is the return value of the
Javascript function. This functionality is accessed through the exec_js() method on QuerySet() objects.
Pass in a string containing a Javascript function as the first argument.

The remaining positional arguments are names of fields that will be passed into you Javascript function as its
arguments. This allows functions to be written that may be executed on any field in a collection (e.g. the sum()
method, which accepts the name of the field to sum over as its argument). Note that field names passed in in this
manner are automatically translated to the names used on the database (set using the name keyword argument to
a field constructor).

Keyword arguments to exec_js() are combined into an object called options, which is available in the
Javascript function. This may be used for defining specific parameters for your function.

Some variables are made available in the scope of the Javascript function:

• collection – the name of the collection that corresponds to the Document class that is being used; this
should be used to get the Collection object from db in Javascript code

• query – the query that has been generated by the QuerySet object; this may be passed into the find()
method on a Collection object in the Javascript function

34 Chapter 4. Offline Reading

http://www.mongodb.org/display/DOCS/Updating#Updating-The%24positionaloperator

MongoEngine Documentation, Release 0.8.0

• options – an object containing the keyword arguments passed into exec_js()

The following example demonstrates the intended usage of exec_js() by defining a function that sums over a
field on a document (this functionality is already available throught sum() but is shown here for sake of example):

def sum_field(document, field_name, include_negatives=True):
code = """
function(sumField) {

var total = 0.0;
db[collection].find(query).forEach(function(doc) {

var val = doc[sumField];
if (val >= 0.0 || options.includeNegatives) {

total += val;
}

});
return total;

}
"""
options = {'includeNegatives': include_negatives}
return document.objects.exec_js(code, field_name, **options)

As fields in MongoEngine may use different names in the database (set using the db_field keyword argu-
ment to a Field constructor), a mechanism exists for replacing MongoEngine field names with the database
field names in Javascript code. When accessing a field on a collection object, use square-bracket notation, and
prefix the MongoEngine field name with a tilde. The field name that follows the tilde will be translated to
the name used in the database. Note that when referring to fields on embedded documents, the name of the
EmbeddedDocumentField, followed by a dot, should be used before the name of the field on the embedded
document. The following example shows how the substitutions are made:

class Comment(EmbeddedDocument):
content = StringField(db_field='body')

class BlogPost(Document):
title = StringField(db_field='doctitle')
comments = ListField(EmbeddedDocumentField(Comment), name='cs')

Returns a list of dictionaries. Each dictionary contains a value named
"document", which corresponds to the "title" field on a BlogPost, and
"comment", which corresponds to an individual comment. The substitutions
made are shown in the comments.
BlogPost.objects.exec_js("""
function() {

var comments = [];
db[collection].find(query).forEach(function(doc) {

// doc[~comments] -> doc["cs"]
var docComments = doc[~comments];

for (var i = 0; i < docComments.length; i++) {
// doc[~comments][i] -> doc["cs"][i]
var comment = doc[~comments][i];

comments.push({
// doc[~title] -> doc["doctitle"]
'document': doc[~title],

// comment[~comments.content] -> comment["body"]
'comment': comment[~comments.content]

});
}

});
return comments;

}
""")

4.2. User Guide 35

MongoEngine Documentation, Release 0.8.0

4.2.6 GridFS

New in version 0.4.

Writing

GridFS support comes in the form of the FileField field object. This field acts as a file-like object and provides
a couple of different ways of inserting and retrieving data. Arbitrary metadata such as content type can also be
stored alongside the files. In the following example, a document is created to store details about animals, including
a photo:

class Animal(Document):
genus = StringField()
family = StringField()
photo = FileField()

marmot = Animal(genus='Marmota', family='Sciuridae')

marmot_photo = open('marmot.jpg', 'r')
marmot.photo.put(marmot_photo, content_type = 'image/jpeg')
marmot.save()

Retrieval

So using the FileField is just like using any other field. The file can also be retrieved just as easily:

marmot = Animal.objects(genus='Marmota').first()
photo = marmot.photo.read()
content_type = marmot.photo.content_type

Streaming

Streaming data into a FileField is achieved in a slightly different manner. First, a new file must be created by
calling the new_file() method. Data can then be written using write():

marmot.photo.new_file()
marmot.photo.write('some_image_data')
marmot.photo.write('some_more_image_data')
marmot.photo.close()

marmot.photo.save()

Deletion

Deleting stored files is achieved with the delete() method:

marmot.photo.delete()

Warning: The FileField in a Document actually only stores the ID of a file in a separate GridFS collection.
This means that deleting a document with a defined FileField does not actually delete the file. You must be
careful to delete any files in a Document as above before deleting the Document itself.

Replacing files

Files can be replaced with the replace() method. This works just like the put() method so even metadata
can (and should) be replaced:

36 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.8.0

another_marmot = open('another_marmot.png', 'r')
marmot.photo.replace(another_marmot, content_type='image/png')

4.2.7 Signals

New in version 0.5.

Note: Signal support is provided by the excellent blinker library and will gracefully fall back if it is not available.

The following document signals exist in MongoEngine and are pretty self-explanatory:

• mongoengine.signals.pre_init

• mongoengine.signals.post_init

• mongoengine.signals.pre_save

• mongoengine.signals.post_save

• mongoengine.signals.pre_delete

• mongoengine.signals.post_delete

• mongoengine.signals.pre_bulk_insert

• mongoengine.signals.post_bulk_insert

Example usage:

from mongoengine import *
from mongoengine import signals

class Author(Document):
name = StringField()

def __unicode__(self):
return self.name

@classmethod
def pre_save(cls, sender, document, **kwargs):

logging.debug("Pre Save: %s" % document.name)

@classmethod
def post_save(cls, sender, document, **kwargs):

logging.debug("Post Save: %s" % document.name)
if 'created' in kwargs:

if kwargs['created']:
logging.debug("Created")

else:
logging.debug("Updated")

signals.pre_save.connect(Author.pre_save, sender=Author)
signals.post_save.connect(Author.post_save, sender=Author)

ReferenceFields and signals

Currently reverse_delete_rules do not trigger signals on the other part of the relationship. If this is required you
must manually handled the reverse deletion.

4.2. User Guide 37

http://pypi.python.org/pypi/blinker

MongoEngine Documentation, Release 0.8.0

4.3 API Reference

4.3.1 Connecting

mongoengine.connect(db, alias=’default’, **kwargs)
Connect to the database specified by the ‘db’ argument.

Connection settings may be provided here as well if the database is not running on the default port on
localhost. If authentication is needed, provide username and password arguments as well.

Multiple databases are supported by using aliases. Provide a separate alias to connect to a different instance
of mongod.

Changed in version 0.6: - added multiple database support.

mongoengine.register_connection(alias, name, host=’localhost’, port=27017,
is_slave=False, read_preference=False, slaves=None,
username=None, password=None, **kwargs)

Add a connection.

Parameters

• alias – the name that will be used to refer to this connection throughout MongoEngine

• name – the name of the specific database to use

• host – the host name of the mongod instance to connect to

• port – the port that the mongod instance is running on

• is_slave – whether the connection can act as a slave ** Depreciated pymongo 2.0.1+

• read_preference – The read preference for the collection ** Added pymongo 2.1

• slaves – a list of aliases of slave connections; each of these must be a registered
connection that has is_slave set to True

• username – username to authenticate with

• password – password to authenticate with

• kwargs – allow ad-hoc parameters to be passed into the pymongo driver

4.3.2 Documents

class mongoengine.Document(*args, **values)
The base class used for defining the structure and properties of collections of documents stored in Mon-
goDB. Inherit from this class, and add fields as class attributes to define a document’s structure. Individual
documents may then be created by making instances of the Document subclass.

By default, the MongoDB collection used to store documents created using a Document subclass will
be the name of the subclass converted to lowercase. A different collection may be specified by providing
collection to the meta dictionary in the class definition.

A Document subclass may be itself subclassed, to create a specialised version of the document that will be
stored in the same collection. To facilitate this behaviour a _cls field is added to documents (hidden though
the MongoEngine interface). To disable this behaviour and remove the dependence on the presence of _cls
set allow_inheritance to False in the meta dictionary.

A Document may use a Capped Collection by specifying max_documents and max_size in the
meta dictionary. max_documents is the maximum number of documents that is allowed to be stored
in the collection, and max_size is the maximum size of the collection in bytes. If max_size is not
specified and max_documents is, max_size defaults to 10000000 bytes (10MB).

38 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.8.0

Indexes may be created by specifying indexes in the meta dictionary. The value should be a list of field
names or tuples of field names. Index direction may be specified by prefixing the field names with a + or -
sign.

Automatic index creation can be disabled by specifying attr:auto_create_index in the meta dictionary. If
this is set to False then indexes will not be created by MongoEngine. This is useful in production systems
where index creation is performed as part of a deployment system.

By default, _cls will be added to the start of every index (that doesn’t contain a list) if allow_inheritance is
True. This can be disabled by either setting cls to False on the specific index or by setting index_cls to False
on the meta dictionary for the document.

Initialise a document or embedded document

Parameters

• __auto_convert – Try and will cast python objects to Object types

• values – A dictionary of values for the document

objects
A QuerySet object that is created lazily on access.

cascade_save(*args, **kwargs)
Recursively saves any references / generic references on an objects

delete(**write_concern)
Delete the Document from the database. This will only take effect if the document has been previ-
ously saved.

Parameters write_concern – Extra keyword arguments are passed down which will
be used as options for the resultant getLastError command. For example,
save(..., write_concern={w: 2, fsync: True}, ...) will wait
until at least two servers have recorded the write and will force an fsync on the primary
server.

classmethod drop_collection()
Drops the entire collection associated with this Document type from the database.

classmethod ensure_index(key_or_list, drop_dups=False, background=False, **kwargs)
Ensure that the given indexes are in place.

Parameters key_or_list – a single index key or a list of index keys (to construct a
multi-field index); keys may be prefixed with a + or a - to determine the index ordering

classmethod ensure_indexes()
Checks the document meta data and ensures all the indexes exist.

Note: You can disable automatic index creation by setting auto_create_index to False in the docu-
ments meta data

my_metaclass
alias of TopLevelDocumentMetaclass

classmethod register_delete_rule(document_cls, field_name, rule)
This method registers the delete rules to apply when removing this object.

reload(max_depth=1)
Reloads all attributes from the database.

New in version 0.1.2.

Changed in version 0.6: Now chainable

save(force_insert=False, validate=True, clean=True, write_concern=None, cascade=None, cas-
cade_kwargs=None, _refs=None, **kwargs)

Save the Document to the database. If the document already exists, it will be updated, otherwise it
will be created.

4.3. API Reference 39

MongoEngine Documentation, Release 0.8.0

Parameters

• force_insert – only try to create a new document, don’t allow updates of existing
documents

• validate – validates the document; set to False to skip.

• clean – call the document clean method, requires validate to be True.

• write_concern – Extra keyword arguments are passed down to save() OR
insert() which will be used as options for the resultant getLastError
command. For example, save(..., write_concern={w: 2, fsync:
True}, ...) will wait until at least two servers have recorded the write and will
force an fsync on the primary server.

• cascade – Sets the flag for cascading saves. You can set a default by setting “cas-
cade” in the document __meta__

• cascade_kwargs – optional kwargs dictionary to be passed throw to cascading
saves

• _refs – A list of processed references used in cascading saves

Changed in version 0.5: In existing documents it only saves changed fields using set / unset. Saves are
cascaded and any DBRef objects that have changes are saved as well.

Changed in version 0.6: Cascade saves are optional = defaults to True, if you want fine grain control
then you can turn off using document meta[’cascade’] = False Also you can pass different kwargs to
the cascade save using cascade_kwargs which overwrites the existing kwargs with custom values

select_related(max_depth=1)
Handles dereferencing of DBRef objects to a maximum depth in order to cut down the number queries
to mongodb.

New in version 0.5.

switch_collection(collection_name)
Temporarily switch the collection for a document instance.

Only really useful for archiving off data and calling save():

user = User.objects.get(id=user_id)
user.switch_collection('old-users')
user.save()

If you need to read from another database see switch_db

Parameters collection_name – The database alias to use for saving the document

switch_db(db_alias)
Temporarily switch the database for a document instance.

Only really useful for archiving off data and calling save():

user = User.objects.get(id=user_id)
user.switch_db('archive-db')
user.save()

If you need to read from another database see switch_db

Parameters db_alias – The database alias to use for saving the document

to_dbref()
Returns an instance of DBRef useful in __raw__ queries.

update(**kwargs)
Performs an update on the Document A convenience wrapper to update().

Raises OperationError if called on an object that has not yet been saved.

40 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.8.0

class mongoengine.EmbeddedDocument(*args, **kwargs)
A Document that isn’t stored in its own collection. EmbeddedDocuments should be used as fields on
Documents through the EmbeddedDocumentField field type.

A EmbeddedDocument subclass may be itself subclassed, to create a specialised version of the embedded
document that will be stored in the same collection. To facilitate this behaviour a _cls field is added to doc-
uments (hidden though the MongoEngine interface). To disable this behaviour and remove the dependence
on the presence of _cls set allow_inheritance to False in the meta dictionary.

my_metaclass
alias of DocumentMetaclass

class mongoengine.DynamicDocument(*args, **values)
A Dynamic Document class allowing flexible, expandable and uncontrolled schemas. As a Document
subclass, acts in the same way as an ordinary document but has expando style properties. Any data passed
or set against the DynamicDocument that is not a field is automatically converted into a DynamicField
and data can be attributed to that field.

Note: There is one caveat on Dynamic Documents: fields cannot start with _

Initialise a document or embedded document

Parameters

• __auto_convert – Try and will cast python objects to Object types

• values – A dictionary of values for the document

my_metaclass
alias of TopLevelDocumentMetaclass

class mongoengine.DynamicEmbeddedDocument(*args, **kwargs)
A Dynamic Embedded Document class allowing flexible, expandable and uncontrolled schemas. See
DynamicDocument for more information about dynamic documents.

my_metaclass
alias of DocumentMetaclass

class mongoengine.document.MapReduceDocument(document, collection, key, value)
A document returned from a map/reduce query.

Parameters

• collection – An instance of Collection

• key – Document/result key, often an instance of ObjectId. If supplied as an
ObjectId found in the given collection, the object can be accessed via the
object property.

• value – The result(s) for this key.

New in version 0.3.

object
Lazy-load the object referenced by self.key. self.key should be the primary_key.

class mongoengine.ValidationError(message=’‘, **kwargs)
Validation exception.

May represent an error validating a field or a document containing fields with validation errors.

Variables errors – A dictionary of errors for fields within this document or list, or None if
the error is for an individual field.

to_dict()
Returns a dictionary of all errors within a document

4.3. API Reference 41

MongoEngine Documentation, Release 0.8.0

Keys are field names or list indices and values are the validation error messages, or a nested dictionary
of errors for an embedded document or list.

4.3.3 Context Managers

class mongoengine.context_managers.switch_db(cls, db_alias)
switch_db alias context manager.

Example

Register connections
register_connection('default', 'mongoenginetest')
register_connection('testdb-1', 'mongoenginetest2')

class Group(Document):
name = StringField()

Group(name="test").save() # Saves in the default db

with switch_db(Group, 'testdb-1') as Group:
Group(name="hello testdb!").save() # Saves in testdb-1

Construct the switch_db context manager

Parameters

• cls – the class to change the registered db

• db_alias – the name of the specific database to use

class mongoengine.context_managers.no_dereference(cls)
no_dereference context manager.

Turns off all dereferencing in Documents for the duration of the context manager:

with no_dereference(Group) as Group:
Group.objects.find()

Construct the no_dereference context manager.

Parameters cls – the class to turn dereferencing off on

class mongoengine.context_managers.query_counter
Query_counter context manager to get the number of queries.

Construct the query_counter.

4.3.4 Querying

class mongoengine.queryset.QuerySet(document, collection)
A set of results returned from a query. Wraps a MongoDB cursor, providing Document objects as the
results.

__call__(q_obj=None, class_check=True, slave_okay=False, read_preference=None, **query)
Filter the selected documents by calling the QuerySet with a query.

Parameters

• q_obj – a Q object to be used in the query; the QuerySet is filtered multiple times
with different Q objects, only the last one will be used

• class_check – If set to False bypass class name check when querying collection

• slave_okay – if True, allows this query to be run against a replica secondary.

• query – Django-style query keyword arguments

42 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.8.0

Params read_preference if set, overrides connection-level read_preference from ReplicaS-
etConnection.

all()
Returns all documents.

all_fields()
Include all fields. Reset all previously calls of .only() or .exclude().

post = BlogPost.objects.exclude("comments").all_fields()

New in version 0.5.

as_pymongo(coerce_types=False)
Instead of returning Document instances, return raw values from pymongo.

Parameters coerce_type – Field types (if applicable) would be use to coerce types.

average(field)
Average over the values of the specified field.

Parameters field – the field to average over; use dot-notation to refer to embedded doc-
ument fields

Changed in version 0.5: - updated to map_reduce as db.eval doesnt work with sharding.

clone()

Creates a copy of the current QuerySet

New in version 0.5.

count(with_limit_and_skip=True)
Count the selected elements in the query.

Parameters (optional) (with_limit_and_skip) – take any limit() or skip() that
has been applied to this cursor into account when getting the count

create(**kwargs)
Create new object. Returns the saved object instance.

New in version 0.4.

delete(write_concern=None)
Delete the documents matched by the query.

Parameters write_concern – Extra keyword arguments are passed down which will
be used as options for the resultant getLastError command. For example,
save(..., write_concern={w: 2, fsync: True}, ...) will wait
until at least two servers have recorded the write and will force an fsync on the primary
server.

distinct(field)
Return a list of distinct values for a given field.

Parameters field – the field to select distinct values from

Note: This is a command and won’t take ordering or limit into account.

New in version 0.4.

Changed in version 0.5: - Fixed handling references

Changed in version 0.6: - Improved db_field refrence handling

ensure_index(**kwargs)
Deprecated use ensure_index()

4.3. API Reference 43

MongoEngine Documentation, Release 0.8.0

exclude(*fields)
Opposite to .only(), exclude some document’s fields.

post = BlogPost.objects(...).exclude("comments")

Note: exclude() is chainable and will perform a union :: So with the following it will exclude both:
title and author.name:

post = BlogPost.objects.exclude("title").exclude("author.name")

all_fields() will reset any field filters.

Parameters fields – fields to exclude

New in version 0.5.

exec_js(code, *fields, **options)
Execute a Javascript function on the server. A list of fields may be provided, which will be translated
to their correct names and supplied as the arguments to the function. A few extra variables are added
to the function’s scope: collection, which is the name of the collection in use; query, which is
an object representing the current query; and options, which is an object containing any options
specified as keyword arguments.

As fields in MongoEngine may use different names in the database (set using the db_field keyword
argument to a Field constructor), a mechanism exists for replacing MongoEngine field names with
the database field names in Javascript code. When accessing a field, use square-bracket notation, and
prefix the MongoEngine field name with a tilde (~).

Parameters

• code – a string of Javascript code to execute

• fields – fields that you will be using in your function, which will be passed in to
your function as arguments

• options – options that you want available to the function (accessed in Javascript
through the options object)

explain(format=False)
Return an explain plan record for the QuerySet‘s cursor.

Parameters format – format the plan before returning it

fields(_only_called=False, **kwargs)
Manipulate how you load this document’s fields. Used by .only() and .exclude() to manipulate which
fields to retrieve. Fields also allows for a greater level of control for example:

Retrieving a Subrange of Array Elements:

You can use the $slice operator to retrieve a subrange of elements in an array. For example to get the
first 5 comments:

post = BlogPost.objects(...).fields(slice__comments=5)

Parameters kwargs – A dictionary identifying what to include

New in version 0.5.

filter(*q_objs, **query)
An alias of __call__()

first()
Retrieve the first object matching the query.

from_json(json_data)
Converts json data to unsaved objects

44 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.8.0

get(*q_objs, **query)
Retrieve the the matching object raising MultipleObjectsReturned or Document-
Name.MultipleObjectsReturned exception if multiple results and DoesNotExist or Document-
Name.DoesNotExist if no results are found.

New in version 0.3.

get_or_create(write_concern=None, auto_save=True, *q_objs, **query)
Retrieve unique object or create, if it doesn’t exist. Returns a tuple of (object, created), where
object is the retrieved or created object and created is a boolean specifying whether a new object
was created. Raises MultipleObjectsReturned or DocumentName.MultipleObjectsReturned if
multiple results are found. A new document will be created if the document doesn’t exists; a dictionary
of default values for the new document may be provided as a keyword argument called defaults.

Note: This requires two separate operations and therefore a race condition exists. Because there are
no transactions in mongoDB other approaches should be investigated, to ensure you don’t accidently
duplicate data when using this method. This is now scheduled to be removed before 1.0

Parameters

• write_concern – optional extra keyword arguments used if we have to create a
new document. Passes any write_concern onto save()

• auto_save – if the object is to be saved automatically if not found.

Deprecated since version 0.8.

Changed in version 0.6: - added auto_save

New in version 0.3.

hint(index=None)
Added ‘hint’ support, telling Mongo the proper index to use for the query.

Judicious use of hints can greatly improve query performance. When doing a query on multiple fields
(at least one of which is indexed) pass the indexed field as a hint to the query.

Hinting will not do anything if the corresponding index does not exist. The last hint applied to this
cursor takes precedence over all others.

New in version 0.5.

in_bulk(object_ids)
Retrieve a set of documents by their ids.

Parameters object_ids – a list or tuple of ObjectIds

Return type dict of ObjectIds as keys and collection-specific Document subclasses as val-
ues.

New in version 0.3.

insert(doc_or_docs, load_bulk=True, write_concern=None)
bulk insert documents

Parameters

• docs_or_doc – a document or list of documents to be inserted

• (optional) (load_bulk) – If True returns the list of document instances

• write_concern – Extra keyword arguments are passed down to insert()which
will be used as options for the resultant getLastError command. For example,
insert(..., {w: 2, fsync: True}) will wait until at least two servers
have recorded the write and will force an fsync on each server being written to.

4.3. API Reference 45

MongoEngine Documentation, Release 0.8.0

By default returns document instances, set load_bulk to False to return just ObjectIds

New in version 0.5.

item_frequencies(field, normalize=False, map_reduce=True)
Returns a dictionary of all items present in a field across the whole queried set of documents, and their
corresponding frequency. This is useful for generating tag clouds, or searching documents.

Note: Can only do direct simple mappings and cannot map across ReferenceField or
GenericReferenceField for more complex counting a manual map reduce call would is re-
quired.

If the field is a ListField, the items within each list will be counted individually.

Parameters

• field – the field to use

• normalize – normalize the results so they add to 1.0

• map_reduce – Use map_reduce over exec_js

Changed in version 0.5: defaults to map_reduce and can handle embedded document lookups

limit(n)
Limit the number of returned documents to n. This may also be achieved using array-slicing syntax
(e.g. User.objects[:5]).

Parameters n – the maximum number of objects to return

map_reduce(map_f, reduce_f, output, finalize_f=None, limit=None, scope=None)
Perform a map/reduce query using the current query spec and ordering. While map_reduce respects
QuerySet chaining, it must be the last call made, as it does not return a maleable QuerySet.

See the test_map_reduce() and test_map_advanced() tests in
tests.queryset.QuerySetTest for usage examples.

Parameters

• map_f – map function, as Code or string

• reduce_f – reduce function, as Code or string

• output – output collection name, if set to ‘inline’ will try to use
inline_map_reduce This can also be a dictionary containing output options see:
http://docs.mongodb.org/manual/reference/commands/#mapReduce

• finalize_f – finalize function, an optional function that performs any post-
reduction processing.

• scope – values to insert into map/reduce global scope. Optional.

• limit – number of objects from current query to provide to map/reduce method

Returns an iterator yielding MapReduceDocument.

Note: Map/Reduce changed in server version >= 1.7.4. The PyMongo map_reduce() helper
requires PyMongo version >= 1.11.

Changed in version 0.5: - removed keep_temp keyword argument, which was only relevant for
MongoDB server versions older than 1.7.4

New in version 0.3.

next()
Wrap the result in a Document object.

no_dereference()
Turn off any dereferencing for the results of this queryset.

46 Chapter 4. Offline Reading

http://docs.mongodb.org/manual/reference/commands/#mapReduce

MongoEngine Documentation, Release 0.8.0

no_sub_classes()
Only return instances of this document and not any inherited documents

none()
Helper that just returns a list

only(*fields)
Load only a subset of this document’s fields.

post = BlogPost.objects(...).only("title", "author.name")

Note: only() is chainable and will perform a union :: So with the following it will fetch both: title
and author.name:

post = BlogPost.objects.only("title").only("author.name")

all_fields() will reset any field filters.

Parameters fields – fields to include

New in version 0.3.

Changed in version 0.5: - Added subfield support

order_by(*keys)
Order the QuerySet by the keys. The order may be specified by prepending each of the keys by a +
or a -. Ascending order is assumed.

Parameters keys – fields to order the query results by; keys may be prefixed with + or - to
determine the ordering direction

read_preference(read_preference)
Change the read_preference when querying.

Parameters read_preference – override ReplicaSetConnection-level preference.

rewind()
Rewind the cursor to its unevaluated state.

New in version 0.3.

scalar(*fields)
Instead of returning Document instances, return either a specific value or a tuple of values in order.

Can be used along with no_dereference() to turn off dereferencing.

Note: This effects all results and can be unset by calling scalar without arguments. Calls only
automatically.

Parameters fields – One or more fields to return instead of a Document.

select_related(max_depth=1)
Handles dereferencing of DBRef objects or ObjectId a maximum depth in order to cut down the
number queries to mongodb.

New in version 0.5.

skip(n)
Skip n documents before returning the results. This may also be achieved using array-slicing syntax
(e.g. User.objects[5:]).

Parameters n – the number of objects to skip before returning results

slave_okay(enabled)
Enable or disable the slave_okay when querying.

Parameters enabled – whether or not the slave_okay is enabled

4.3. API Reference 47

MongoEngine Documentation, Release 0.8.0

snapshot(enabled)
Enable or disable snapshot mode when querying.

Parameters enabled – whether or not snapshot mode is enabled

..versionchanged:: 0.5 - made chainable

sum(field)
Sum over the values of the specified field.

Parameters field – the field to sum over; use dot-notation to refer to embedded document
fields

Changed in version 0.5: - updated to map_reduce as db.eval doesnt work with sharding.

timeout(enabled)
Enable or disable the default mongod timeout when querying.

Parameters enabled – whether or not the timeout is used

..versionchanged:: 0.5 - made chainable

to_json()
Converts a queryset to JSON

update(upsert=False, multi=True, write_concern=None, **update)
Perform an atomic update on the fields matched by the query.

Parameters

• upsert – Any existing document with that “_id” is overwritten.

• multi – Update multiple documents.

• write_concern – Extra keyword arguments are passed down which will be used
as options for the resultant getLastError command. For example, save(...,
write_concern={w: 2, fsync: True}, ...) will wait until at least
two servers have recorded the write and will force an fsync on the primary server.

• update – Django-style update keyword arguments

New in version 0.2.

update_one(upsert=False, write_concern=None, **update)
Perform an atomic update on first field matched by the query.

Parameters

• upsert – Any existing document with that “_id” is overwritten.

• write_concern – Extra keyword arguments are passed down which will be used
as options for the resultant getLastError command. For example, save(...,
write_concern={w: 2, fsync: True}, ...) will wait until at least
two servers have recorded the write and will force an fsync on the primary server.

• update – Django-style update keyword arguments

New in version 0.2.

values_list(*fields)
An alias for scalar

where(where_clause)
Filter QuerySet results with a $where clause (a Javascript expression). Performs automatic field
name substitution like mongoengine.queryset.Queryset.exec_js().

Note: When using this mode of query, the database will call your function, or evaluate your predicate
clause, for each object in the collection.

New in version 0.5.

48 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.8.0

with_id(object_id)
Retrieve the object matching the id provided. Uses object_id only and raises InvalidQueryError if a
filter has been applied. Returns None if no document exists with that id.

Parameters object_id – the value for the id of the document to look up

Changed in version 0.6: Raises InvalidQueryError if filter has been set

mongoengine.queryset.queryset_manager(func)
Decorator that allows you to define custom QuerySet managers on Document classes. The manager must
be a function that accepts a Document class as its first argument, and a QuerySet as its second argument.
The method function should return a QuerySet, probably the same one that was passed in, but modified
in some way.

4.3.5 Fields

class mongoengine.fields.StringField(regex=None, max_length=None, min_length=None,
**kwargs)

A unicode string field.

class mongoengine.fields.URLField(verify_exists=False, url_regex=None, **kwargs)
A field that validates input as an URL.

New in version 0.3.

class mongoengine.fields.EmailField(regex=None, max_length=None, min_length=None,
**kwargs)

A field that validates input as an E-Mail-Address.

New in version 0.4.

class mongoengine.fields.IntField(min_value=None, max_value=None, **kwargs)
An 32-bit integer field.

class mongoengine.fields.LongField(min_value=None, max_value=None, **kwargs)
An 64-bit integer field.

class mongoengine.fields.FloatField(min_value=None, max_value=None, **kwargs)
An floating point number field.

class mongoengine.fields.DecimalField(min_value=None, max_value=None,
force_string=False, precision=2, round-
ing=’ROUND_HALF_UP’, **kwargs)

A fixed-point decimal number field.

Changed in version 0.8.

New in version 0.3.

Parameters

• min_value – Validation rule for the minimum acceptable value.

• max_value – Validation rule for the maximum acceptable value.

• force_string – Store as a string.

• precision – Number of decimal places to store.

• rounding – The rounding rule from the python decimal libary:

– decimial.ROUND_CEILING (towards Infinity)

– decimial.ROUND_DOWN (towards zero)

– decimial.ROUND_FLOOR (towards -Infinity)

– decimial.ROUND_HALF_DOWN (to nearest with ties going towards zero)

– decimial.ROUND_HALF_EVEN (to nearest with ties going to nearest even integer)

4.3. API Reference 49

MongoEngine Documentation, Release 0.8.0

– decimial.ROUND_HALF_UP (to nearest with ties going away from zero)

– decimial.ROUND_UP (away from zero)

– decimial.ROUND_05UP (away from zero if last digit after rounding towards zero
would have been 0 or 5; otherwise towards zero)

Defaults to: decimal.ROUND_HALF_UP

class mongoengine.fields.BooleanField(db_field=None, name=None, required=False, de-
fault=None, unique=False, unique_with=None, pri-
mary_key=False, validation=None, choices=None,
verbose_name=None, help_text=None)

A boolean field type.

New in version 0.1.2.

class mongoengine.fields.DateTimeField(db_field=None, name=None, required=False,
default=None, unique=False, unique_with=None,
primary_key=False, validation=None,
choices=None, verbose_name=None,
help_text=None)

A datetime field.

Note: Microseconds are rounded to the nearest millisecond. Pre UTC microsecond support is effe-
cively broken. Use ComplexDateTimeField if you need accurate microsecond support.

class mongoengine.fields.ComplexDateTimeField(separator=’, ‘, **kwargs)
ComplexDateTimeField handles microseconds exactly instead of rounding like DateTimeField does.

Derives from a StringField so you can do gte and lte filtering by using lexicographical comparison when
filtering / sorting strings.

The stored string has the following format:

YYYY,MM,DD,HH,MM,SS,NNNNNN

Where NNNNNN is the number of microseconds of the represented datetime. The , as the separator can be
easily modified by passing the separator keyword when initializing the field.

New in version 0.5.

class mongoengine.fields.EmbeddedDocumentField(document_type, **kwargs)
An embedded document field - with a declared document_type. Only valid values are subclasses of
EmbeddedDocument.

class mongoengine.fields.GenericEmbeddedDocumentField(db_field=None, name=None,
required=False, de-
fault=None, unique=False,
unique_with=None, pri-
mary_key=False, valida-
tion=None, choices=None,
verbose_name=None,
help_text=None)

A generic embedded document field - allows any EmbeddedDocument to be stored.

Only valid values are subclasses of EmbeddedDocument.

Note: You can use the choices param to limit the acceptable EmbeddedDocument types

class mongoengine.fields.DynamicField(db_field=None, name=None, required=False, de-
fault=None, unique=False, unique_with=None, pri-
mary_key=False, validation=None, choices=None,
verbose_name=None, help_text=None)

A truly dynamic field type capable of handling different and varying types of data.

Used by DynamicDocument to handle dynamic data

50 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.8.0

class mongoengine.fields.ListField(field=None, **kwargs)
A list field that wraps a standard field, allowing multiple instances of the field to be used as a list in the
database.

If using with ReferenceFields see: One to Many with ListFields

Note: Required means it cannot be empty - as the default for ListFields is []

class mongoengine.fields.SortedListField(field, **kwargs)
A ListField that sorts the contents of its list before writing to the database in order to ensure that a sorted
list is always retrieved.

Warning: There is a potential race condition when handling lists. If you set / save the whole list then
other processes trying to save the whole list as well could overwrite changes. The safest way to append
to a list is to perform a push operation.

New in version 0.4.

Changed in version 0.6: - added reverse keyword

class mongoengine.fields.DictField(basecls=None, field=None, *args, **kwargs)
A dictionary field that wraps a standard Python dictionary. This is similar to an embedded document, but
the structure is not defined.

Note: Required means it cannot be empty - as the default for ListFields is []

New in version 0.3.

Changed in version 0.5: - Can now handle complex / varying types of data

class mongoengine.fields.MapField(field=None, *args, **kwargs)
A field that maps a name to a specified field type. Similar to a DictField, except the ‘value’ of each item
must match the specified field type.

New in version 0.5.

class mongoengine.fields.ReferenceField(document_type, dbref=False, re-
verse_delete_rule=0, **kwargs)

A reference to a document that will be automatically dereferenced on access (lazily).

Use the reverse_delete_rule to handle what should happen if the document the field is referencing is deleted.
EmbeddedDocuments, DictFields and MapFields do not support reverse_delete_rules and an InvalidDocu-
mentError will be raised if trying to set on one of these Document / Field types.

The options are:

•DO_NOTHING - don’t do anything (default).

•NULLIFY - Updates the reference to null.

•CASCADE - Deletes the documents associated with the reference.

•DENY - Prevent the deletion of the reference object.

•PULL - Pull the reference from a ListField of references

Alternative syntax for registering delete rules (useful when implementing bi-directional delete rules)

class Bar(Document):
content = StringField()
foo = ReferenceField('Foo')

Bar.register_delete_rule(Foo, 'bar', NULLIFY)

Note: reverse_delete_rules do not trigger pre / post delete signals to be triggered.

4.3. API Reference 51

MongoEngine Documentation, Release 0.8.0

Changed in version 0.5: added reverse_delete_rule

Initialises the Reference Field.

Parameters

• dbref – Store the reference as DBRef or as the ObjectId.id .

• reverse_delete_rule – Determines what to do when the referring object is
deleted

class mongoengine.fields.GenericReferenceField(db_field=None, name=None, re-
quired=False, default=None,
unique=False, unique_with=None,
primary_key=False, validation=None,
choices=None, verbose_name=None,
help_text=None)

A reference to any Document subclass that will be automatically dereferenced on access (lazily).

Note:
•Any documents used as a generic reference must be registered in the document registry. Importing the
model will automatically register it.

•You can use the choices param to limit the acceptable Document types

New in version 0.3.

class mongoengine.fields.BinaryField(max_bytes=None, **kwargs)
A binary data field.

class mongoengine.fields.FileField(db_alias=’default’, collection_name=’fs’, **kwargs)
A GridFS storage field.

New in version 0.4.

Changed in version 0.5: added optional size param for read

Changed in version 0.6: added db_alias for multidb support

class mongoengine.fields.ImageField(size=None, thumbnail_size=None, collec-
tion_name=’images’, **kwargs)

A Image File storage field.

@size (width, height, force): max size to store images, if larger will be automatically resized ex:
size=(800, 600, True)

@thumbnail (width, height, force): size to generate a thumbnail

New in version 0.6.

class mongoengine.fields.SequenceField(collection_name=None, db_alias=None, se-
quence_name=None, value_decorator=None,
*args, **kwargs)

Provides a sequental counter see: http://www.mongodb.org/display/DOCS/Object+IDs#ObjectIDs-
SequenceNumbers

Note: Although traditional databases often use increasing sequence numbers for primary keys. In Mon-
goDB, the preferred approach is to use Object IDs instead. The concept is that in a very large cluster of
machines, it is easier to create an object ID than have global, uniformly increasing sequence numbers.

Use any callable as value_decorator to transform calculated counter into any value suitable for your needs,
e.g. string or hexadecimal representation of the default integer counter value.

New in version 0.5.

Changed in version 0.8: added value_decorator

52 Chapter 4. Offline Reading

http://www.mongodb.org/display/DOCS/Object+IDs#ObjectIDs-SequenceNumbers
http://www.mongodb.org/display/DOCS/Object+IDs#ObjectIDs-SequenceNumbers

MongoEngine Documentation, Release 0.8.0

class mongoengine.fields.ObjectIdField(db_field=None, name=None, required=False,
default=None, unique=False, unique_with=None,
primary_key=False, validation=None,
choices=None, verbose_name=None,
help_text=None)

A field wrapper around MongoDB’s ObjectIds.

class mongoengine.fields.UUIDField(binary=True, **kwargs)
A UUID field.

New in version 0.6.

Store UUID data in the database

Parameters binary – if False store as a string.

Changed in version 0.8.0.

Changed in version 0.6.19.

class mongoengine.fields.GeoPointField(db_field=None, name=None, required=False,
default=None, unique=False, unique_with=None,
primary_key=False, validation=None,
choices=None, verbose_name=None,
help_text=None)

A list storing a latitude and longitude.

New in version 0.4.

class mongoengine.fields.PointField(auto_index=True, *args, **kwargs)
A geo json field storing a latitude and longitude.

The data is represented as:

{ "type" : "Point" ,
"coordinates" : [x, y]}

You can either pass a dict with the full information or a list to set the value.

Requires mongodb >= 2.4 .. versionadded:: 0.8

Parameters auto_index – Automatically create a “2dsphere” index. Defaults to True.

class mongoengine.fields.LineStringField(auto_index=True, *args, **kwargs)
A geo json field storing a line of latitude and longitude coordinates.

The data is represented as:

{ "type" : "LineString" ,
"coordinates" : [[x1, y1], [x1, y1] ... [xn, yn]]}

You can either pass a dict with the full information or a list of points.

Requires mongodb >= 2.4 .. versionadded:: 0.8

Parameters auto_index – Automatically create a “2dsphere” index. Defaults to True.

class mongoengine.fields.PolygonField(auto_index=True, *args, **kwargs)
A geo json field storing a polygon of latitude and longitude coordinates.

The data is represented as:

{ "type" : "Polygon" ,
"coordinates" : [[[x1, y1], [x1, y1] ... [xn, yn]],

[[x1, y1], [x1, y1] ... [xn, yn]]}

You can either pass a dict with the full information or a list of LineStrings. The first LineString being the
outside and the rest being holes.

Requires mongodb >= 2.4 .. versionadded:: 0.8

4.3. API Reference 53

MongoEngine Documentation, Release 0.8.0

Parameters auto_index – Automatically create a “2dsphere” index. Defaults to True.

class mongoengine.fields.GridFSError

class mongoengine.fields.GridFSProxy(grid_id=None, key=None, instance=None,
db_alias=’default’, collection_name=’fs’)

Proxy object to handle writing and reading of files to and from GridFS

New in version 0.4.

Changed in version 0.5: - added optional size param to read

Changed in version 0.6: - added collection name param

class mongoengine.fields.ImageGridFsProxy(grid_id=None, key=None, instance=None,
db_alias=’default’, collection_name=’fs’)

Proxy for ImageField

versionadded: 0.6

class mongoengine.fields.ImproperlyConfigured

4.4 Changelog

4.4.1 Changes in 0.8.0

• Fixed querying ReferenceField custom_id (#317)

• Fixed pickle issues with collections (#316)

• Added get_next_value preview for SequenceFields (#319)

• Added no_sub_classes context manager and queryset helper (#312)

• Querysets now utilises a local cache

• Changed __len__ behavour in the queryset (#247, #311)

• Fixed querying string versions of ObjectIds issue with ReferenceField (#307)

• Added $setOnInsert support for upserts (#308)

• Upserts now possible with just query parameters (#309)

• Upserting is the only way to ensure docs are saved correctly (#306)

• Fixed register_delete_rule inheritance issue

• Fix cloning of sliced querysets (#303)

• Fixed update_one write concern (#302)

• Updated minimum requirement for pymongo to 2.5

• Add support for new geojson fields, indexes and queries (#299)

• If values cant be compared mark as changed (#287)

• Ensure as_pymongo() and to_json honour only() and exclude() (#293)

• Document serialization uses field order to ensure a strict order is set (#296)

• DecimalField now stores as float not string (#289)

• UUIDField now stores as a binary by default (#292)

• Added Custom User Model for Django 1.5 (#285)

• Cascading saves now default to off (#291)

• ReferenceField now store ObjectId’s by default rather than DBRef (#290)

54 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.8.0

• Added ImageField support for inline replacements (#86)

• Added SequenceField.set_next_value(value) helper (#159)

• Updated .only() behaviour - now like exclude it is chainable (#202)

• Added with_limit_and_skip support to count() (#235)

• Objects queryset manager now inherited (#256)

• Updated connection to use MongoClient (#262, #274)

• Fixed db_alias and inherited Documents (#143)

• Documentation update for document errors (#124)

• Deprecated get_or_create (#35)

• Updated inheritable objects created by upsert now contain _cls (#118)

• Added support for creating documents with embedded documents in a single operation (#6)

• Added to_json and from_json to Document (#1)

• Added to_json and from_json to QuerySet (#131)

• Updated index creation now tied to Document class (#102)

• Added none() to queryset (#127)

• Updated SequenceFields to allow post processing of the calculated counter value (#141)

• Added clean method to documents for pre validation data cleaning (#60)

• Added support setting for read prefrence at a query level (#157)

• Added _instance to EmbeddedDocuments pointing to the parent (#139)

• Inheritance is off by default (#122)

• Remove _types and just use _cls for inheritance (#148)

• Only allow QNode instances to be passed as query objects (#199)

• Dynamic fields are now validated on save (#153) (#154)

• Added support for multiple slices and made slicing chainable. (#170) (#190) (#191)

• Fixed GridFSProxy __getattr__ behaviour (#196)

• Fix Django timezone support (#151)

• Simplified Q objects, removed QueryTreeTransformerVisitor (#98) (#171)

• FileFields now copyable (#198)

• Querysets now return clones and are no longer edit in place (#56)

• Added support for $maxDistance (#179)

• Uses getlasterror to test created on updated saves (#163)

• Fixed inheritance and unique index creation (#140)

• Fixed reverse delete rule with inheritance (#197)

• Fixed validation for GenericReferences which havent been dereferenced

• Added switch_db context manager (#106)

• Added switch_db method to document instances (#106)

• Added no_dereference context manager (#82) (#61)

• Added switch_collection context manager (#220)

• Added switch_collection method to document instances (#220)

4.4. Changelog 55

MongoEngine Documentation, Release 0.8.0

• Added support for compound primary keys (#149) (#121)

• Fixed overriding objects with custom manager (#58)

• Added no_dereference method for querysets (#82) (#61)

• Undefined data should not override instance methods (#49)

• Added Django Group and Permission (#142)

• Added Doc class and pk to Validation messages (#69)

• Fixed Documents deleted via a queryset don’t call any signals (#105)

• Added the “get_decoded” method to the MongoSession class (#216)

• Fixed invalid choices error bubbling (#214)

• Updated Save so it calls $set and $unset in a single operation (#211)

• Fixed inner queryset looping (#204)

4.4.2 Changes in 0.7.10

• Fix UnicodeEncodeError for dbref (#278)

• Allow construction using positional parameters (#268)

• Updated EmailField length to support long domains (#243)

• Added 64-bit integer support (#251)

• Added Django sessions TTL support (#224)

• Fixed issue with numerical keys in MapField(EmbeddedDocumentField()) (#240)

• Fixed clearing _changed_fields for complex nested embedded documents (#237, #239, #242)

• Added “id” back to _data dictionary (#255)

• Only mark a field as changed if the value has changed (#258)

• Explicitly check for Document instances when dereferencing (#261)

• Fixed order_by chaining issue (#265)

• Added dereference support for tuples (#250)

• Resolve field name to db field name when using distinct(#260, #264, #269)

• Added kwargs to doc.save to help interop with django (#223, #270)

• Fixed cloning querysets in PY3

• Int fields no longer unset in save when changed to 0 (#272)

• Fixed ReferenceField query chaining bug fixed (#254)

4.4.3 Changes in 0.7.9

• Better fix handling for old style _types

• Embedded SequenceFields follow collection naming convention

56 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.8.0

4.4.4 Changes in 0.7.8

• Fix sequence fields in embedded documents (#166)

• Fix query chaining with .order_by() (#176)

• Added optional encoding and collection config for Django sessions (#180, #181, #183)

• Fixed EmailField so can add extra validation (#173, #174, #187)

• Fixed bulk inserts can now handle custom pk’s (#192)

• Added as_pymongo method to return raw or cast results from pymongo (#193)

4.4.5 Changes in 0.7.7

• Fix handling for old style _types

4.4.6 Changes in 0.7.6

• Unicode fix for repr (#133)

• Allow updates with match operators (#144)

• Updated URLField - now can have a override the regex (#136)

• Allow Django AuthenticationBackends to work with Django user (hmarr/mongoengine#573)

• Fixed reload issue with ReferenceField where dbref=False (#138)

4.4.7 Changes in 0.7.5

• ReferenceFields with dbref=False use ObjectId instead of strings (#134) See ticket for upgrade notes (#134)

4.4.8 Changes in 0.7.4

• Fixed index inheritance issues - firmed up testcases (#123) (#125)

4.4.9 Changes in 0.7.3

• Reverted EmbeddedDocuments meta handling - now can turn off inheritance (#119)

4.4.10 Changes in 0.7.2

• Update index spec generation so its not destructive (#113)

4.4.11 Changes in 0.7.1

• Fixed index spec inheritance (#111)

4.4. Changelog 57

MongoEngine Documentation, Release 0.8.0

4.4.12 Changes in 0.7.0

• Updated queryset.delete so you can use with skip / limit (#107)

• Updated index creation allows kwargs to be passed through refs (#104)

• Fixed Q object merge edge case (#109)

• Fixed reloading on sharded documents (hmarr/mongoengine#569)

• Added NotUniqueError for duplicate keys (#62)

• Added custom collection / sequence naming for SequenceFields (#92)

• Fixed UnboundLocalError in composite index with pk field (#88)

• Updated ReferenceField’s to optionally store ObjectId strings this will become the default in 0.8 (#89)

• Added FutureWarning - save will default to cascade=False in 0.8

• Added example of indexing embedded document fields (#75)

• Fixed ImageField resizing when forcing size (#80)

• Add flexibility for fields handling bad data (#78)

• Embedded Documents no longer handle meta definitions

• Use weakref proxies in base lists / dicts (#74)

• Improved queryset filtering (hmarr/mongoengine#554)

• Fixed Dynamic Documents and Embedded Documents (hmarr/mongoengine#561)

• Fixed abstract classes and shard keys (#64)

• Fixed Python 2.5 support

• Added Python 3 support (thanks to Laine Heron)

4.4.13 Changes in 0.6.20

• Added support for distinct and db_alias (#59)

• Improved support for chained querysets when constraining the same fields (hmarr/mongoengine#554)

• Fixed BinaryField lookup re (#48)

4.4.14 Changes in 0.6.19

• Added Binary support to UUID (#47)

• Fixed MapField lookup for fields without declared lookups (#46)

• Fixed BinaryField python value issue (#48)

• Fixed SequenceField non numeric value lookup (#41)

• Fixed queryset manager issue (#52)

• Fixed FileField comparision (hmarr/mongoengine#547)

4.4.15 Changes in 0.6.18

• Fixed recursion loading bug in _get_changed_fields

58 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.8.0

4.4.16 Changes in 0.6.17

• Fixed issue with custom queryset manager expecting explict variable names

4.4.17 Changes in 0.6.16

• Fixed issue where db_alias wasn’t inherited

4.4.18 Changes in 0.6.15

• Updated validation error messages

• Added support for null / zero / false values in item_frequencies

• Fixed cascade save edge case

• Fixed geo index creation through reference fields

• Added support for args / kwargs when using @queryset_manager

• Deref list custom id fix

4.4.19 Changes in 0.6.14

• Fixed error dict with nested validation

• Fixed Int/Float fields and not equals None

• Exclude tests from installation

• Allow tuples for index meta

• Fixed use of str in instance checks

• Fixed unicode support in transform update

• Added support for add_to_set and each

4.4.20 Changes in 0.6.13

• Fixed EmbeddedDocument db_field validation issue

• Fixed StringField unicode issue

• Fixes __repr__ modifying the cursor

4.4.21 Changes in 0.6.12

• Fixes scalar lookups for primary_key

• Fixes error with _delta handling DBRefs

4.4.22 Changes in 0.6.11

• Fixed inconsistency handling None values field attrs

• Fixed map_field embedded db_field issue

• Fixed .save() _delta issue with DbRefs

• Fixed Django TestCase

4.4. Changelog 59

MongoEngine Documentation, Release 0.8.0

• Added cmp to Embedded Document

• Added PULL reverse_delete_rule

• Fixed CASCADE delete bug

• Fixed db_field data load error

• Fixed recursive save with FileField

4.4.23 Changes in 0.6.10

• Fixed basedict / baselist to return super(..)

• Promoted BaseDynamicField to DynamicField

4.4.24 Changes in 0.6.9

• Fixed sparse indexes on inherited docs

• Removed FileField auto deletion, needs more work maybe 0.7

4.4.25 Changes in 0.6.8

• Fixed FileField losing reference when no default set

• Removed possible race condition from FileField (grid_file)

• Added assignment to save, can now do: b = MyDoc(**kwargs).save()

• Added support for pull operations on nested EmbeddedDocuments

• Added support for choices with GenericReferenceFields

• Added support for choices with GenericEmbeddedDocumentFields

• Fixed Django 1.4 sessions first save data loss

• FileField now automatically delete files on .delete()

• Fix for GenericReference to_mongo method

• Fixed connection regression

• Updated Django User document, now allows inheritance

4.4.26 Changes in 0.6.7

• Fixed indexing on ‘_id’ or ‘pk’ or ‘id’

• Invalid data from the DB now raises a InvalidDocumentError

• Cleaned up the Validation Error - docs and code

• Added meta auto_create_index so you can disable index creation

• Added write concern options to inserts

• Fixed typo in meta for index options

• Bug fix Read preference now passed correctly

• Added support for File like objects for GridFS

• Fix for #473 - Dereferencing abstracts

60 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.8.0

4.4.27 Changes in 0.6.6

• Django 1.4 fixed (finally)

• Added tests for Django

4.4.28 Changes in 0.6.5

• More Django updates

4.4.29 Changes in 0.6.4

• Refactored connection / fixed replicasetconnection

• Bug fix for unknown connection alias error message

• Sessions support Django 1.3 and Django 1.4

• Minor fix for ReferenceField

4.4.30 Changes in 0.6.3

• Updated sessions for Django 1.4

• Bug fix for updates where listfields contain embedded documents

• Bug fix for collection naming and mixins

4.4.31 Changes in 0.6.2

• Updated documentation for ReplicaSet connections

• Hack round _types issue with SERVER-5247 - querying other arrays may also cause problems.

4.4.32 Changes in 0.6.1

• Fix for replicaSet connections

4.4.33 Changes in 0.6

• Added FutureWarning to inherited classes not declaring ‘allow_inheritance’ as the default will change in
0.7

• Added support for covered indexes when inheritance is off

• No longer always upsert on save for items with a ‘_id’

• Error raised if update doesn’t have an operation

• DeReferencing is now thread safe

• Errors raised if trying to perform a join in a query

• Updates can now take __raw__ queries

• Added custom 2D index declarations

• Added replicaSet connection support

• Updated deprecated imports from pymongo (safe for pymongo 2.2)

4.4. Changelog 61

MongoEngine Documentation, Release 0.8.0

• Added uri support for connections

• Added scalar for efficiently returning partial data values (aliased to values_list)

• Fixed limit skip bug

• Improved Inheritance / Mixin

• Added sharding support

• Added pymongo 2.1 support

• Fixed Abstract documents can now declare indexes

• Added db_alias support to individual documents

• Fixed GridFS documents can now be pickled

• Added Now raises an InvalidDocumentError when declaring multiple fields with the same db_field

• Added InvalidQueryError when calling with_id with a filter

• Added support for DBRefs in distinct()

• Fixed issue saving False booleans

• Fixed issue with dynamic documents deltas

• Added Reverse Delete Rule support to ListFields - MapFields aren’t supported

• Added customisable cascade kwarg options

• Fixed Handle None values for non-required fields

• Removed Document._get_subclasses() - no longer required

• Fixed bug requiring subclasses when not actually needed

• Fixed deletion of dynamic data

• Added support for the $elementMatch operator

• Added reverse option to SortedListFields

• Fixed dereferencing - multi directional list dereferencing

• Fixed issue creating indexes with recursive embedded documents

• Fixed recursive lookup in _unique_with_indexes

• Fixed passing ComplexField defaults to constructor for ReferenceFields

• Fixed validation of DictField Int keys

• Added optional cascade saving

• Fixed dereferencing - max_depth now taken into account

• Fixed document mutation saving issue

• Fixed positional operator when replacing embedded documents

• Added Non-Django Style choices back (you can have either)

• Fixed __repr__ of a sliced queryset

• Added recursive validation error of documents / complex fields

• Fixed breaking during queryset iteration

• Added pre and post bulk-insert signals

• Added ImageField - requires PIL

• Fixed Reference Fields can be None in get_or_create / queries

• Fixed accessing pk on an embedded document

62 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.8.0

• Fixed calling a queryset after drop_collection now recreates the collection

• Add field name to validation exception messages

• Added UUID field

• Improved efficiency of .get()

• Updated ComplexFields so if required they won’t accept empty lists / dicts

• Added spec file for rpm-based distributions

• Fixed ListField so it doesnt accept strings

• Added DynamicDocument and EmbeddedDynamicDocument classes for expando schemas

4.4.34 Changes in v0.5.2

• A Robust Circular reference bugfix

4.4.35 Changes in v0.5.1

• Fixed simple circular reference bug

4.4.36 Changes in v0.5

• Added InvalidDocumentError - so Document core methods can’t be overwritten

• Added GenericEmbeddedDocument - so you can embed any type of embeddable document

• Added within_polygon support - for those with mongodb 1.9

• Updated sum / average to use map_reduce as db.eval doesn’t work in sharded environments

• Added where() - filter to allowing users to specify query expressions as Javascript

• Added SequenceField - for creating sequential counters

• Added update() convenience method to a document

• Added cascading saves - so changes to Referenced documents are saved on .save()

• Added select_related() support

• Added support for the positional operator

• Updated geo index checking to be recursive and check in embedded documents

• Updated default collection naming convention

• Added Document Mixin support

• Fixed queryet __repr__ mid iteration

• Added hint() support, so cantell Mongo the proper index to use for the query

• Fixed issue with inconsitent setting of _cls breaking inherited referencing

• Added help_text and verbose_name to fields to help with some form libs

• Updated item_frequencies to handle embedded document lookups

• Added delta tracking now only sets / unsets explicitly changed fields

• Fixed saving so sets updated values rather than overwrites

• Added ComplexDateTimeField - Handles datetimes correctly with microseconds

• Added ComplexBaseField - for improved flexibility and performance

4.4. Changelog 63

MongoEngine Documentation, Release 0.8.0

• Added get_FIELD_display() method for easy choice field displaying

• Added queryset.slave_okay(enabled) method

• Updated queryset.timeout(enabled) and queryset.snapshot(enabled) to be chainable

• Added insert method for bulk inserts

• Added blinker signal support

• Added query_counter context manager for tests

• Added map_reduce method item_frequencies and set as default (as db.eval doesn’t work in sharded envi-
ronments)

• Added inline_map_reduce option to map_reduce

• Updated connection exception so it provides more info on the cause.

• Added searching multiple levels deep in DictField

• Added DictField entries containing strings to use matching operators

• Added MapField, similar to DictField

• Added Abstract Base Classes

• Added Custom Objects Managers

• Added sliced subfields updating

• Added NotRegistered exception if dereferencing Document not in the registry

• Added a write concern for save, update, update_one and get_or_create

• Added slicing / subarray fetching controls

• Fixed various unique index and other index issues

• Fixed threaded connection issues

• Added spherical geospatial query operators

• Updated queryset to handle latest version of pymongo map_reduce now requires an output.

• Added Document __hash__, __ne__ for pickling

• Added FileField optional size arg for read method

• Fixed FileField seek and tell methods for reading files

• Added QuerySet.clone to support copying querysets

• Fixed item_frequencies when using name thats the same as a native js function

• Added reverse delete rules

• Fixed issue with unset operation

• Fixed Q-object bug

• Added QuerySet.all_fields resets previous .only() and .exclude()

• Added QuerySet.exclude

• Added django style choices

• Fixed order and filter issue

• Added QuerySet.only subfield support

• Added creation_counter to BaseField allowing fields to be sorted in the way the user has specified them

• Fixed various errors

• Added many tests

64 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.8.0

4.4.37 Changes in v0.4

• Added GridFSStorage Django storage backend

• Added FileField for GridFS support

• New Q-object implementation, which is no longer based on Javascript

• Added SortedListField

• Added EmailField

• Added GeoPointField

• Added exact and iexact match operators to QuerySet

• Added get_document_or_404 and get_list_or_404 Django shortcuts

• Added new query operators for Geo queries

• Added not query operator

• Added new update operators: pop and add_to_set

• Added __raw__ query parameter

• Added support for custom querysets

• Fixed document inheritance primary key issue

• Added support for querying by array element position

• Base class can now be defined for DictField

• Fixed MRO error that occured on document inheritance

• Added QuerySet.distinct, QuerySet.create, QuerySet.snapshot,
QuerySet.timeout and QuerySet.all

• Subsequent calls to connect() now work

• Introduced min_length for StringField

• Fixed multi-process connection issue

• Other minor fixes

4.4.38 Changes in v0.3

• Added MapReduce support

• Added contains, startswith and endswith query operators (and case-insensitive versions that are
prefixed with ‘i’)

• Deprecated fields’ name parameter, replaced with db_field

• Added QuerySet.only for only retrieving specific fields

• Added QuerySet.in_bulk() for bulk querying using ids

• QuerySets now have a rewind() method, which is called automatically when the iterator is exhausted,
allowing QuerySets to be reused

• Added DictField

• Added URLField

• Added DecimalField

• Added BinaryField

• Added GenericReferenceField

4.4. Changelog 65

MongoEngine Documentation, Release 0.8.0

• Added get() and get_or_create() methods to QuerySet

• ReferenceFields may now reference the document they are defined on (recursive references) and doc-
uments that have not yet been defined

• Document objects may now be compared for equality (equal if _ids are equal and documents are of same
type)

• QuerySet update methods now have an upsert parameter

• Added field name substitution for Javascript code (allows the user to use the Python names for fields in JS,
which are later substituted for the real field names)

• Q objects now support regex querying

• Fixed bug where referenced documents within lists weren’t properly dereferenced

• ReferenceFields may now be queried using their _id

• Fixed bug where EmbeddedDocuments couldn’t be non-polymorphic

• queryset_manager functions now accept two arguments – the document class as the first and the query-
set as the second

• Fixed bug where QuerySet.exec_js ignored Q objects

• Other minor fixes

4.4.39 Changes in v0.2.2

• Fixed bug that prevented indexes from being used on ListFields

• Document.filter() added as an alias to Document.__call__()

• validate() may now be used on EmbeddedDocuments

4.4.40 Changes in v0.2.1

• Added a MongoEngine backend for Django sessions

• Added force_insert to Document.save()

• Improved querying syntax for ListField and EmbeddedDocumentField

• Added support for user-defined primary keys (_id in MongoDB)

4.4.41 Changes in v0.2

• Added Q class for building advanced queries

• Added QuerySet methods for atomic updates to documents

• Fields may now specify unique=True to enforce uniqueness across a collection

• Added option for default document ordering

• Fixed bug in index definitions

4.4.42 Changes in v0.1.3

• Added Django authentication backend

• Added Document.meta support for indexes, which are ensured just before querying takes place

• A few minor bugfixes

66 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.8.0

4.4.43 Changes in v0.1.2

• Query values may be processed before before being used in queries

• Made connections lazy

• Fixed bug in Document dictionary-style access

• Added BooleanField

• Added Document.reload() method

4.4.44 Changes in v0.1.1

• Documents may now use capped collections

4.5 Upgrading

4.5.1 0.7 to 0.8

There have been numerous backwards breaking changes in 0.8. The reasons for these are ensure that Mongo-
Engine has sane defaults going forward and performs the best it can out the box. Where possible there have been
FutureWarnings to help get you ready for the change, but that hasn’t been possible for the whole of the release.

Warning: Breaking changes - test upgrading on a test system before putting live. There maybe multiple
manual steps in migrating and these are best honed on a staging / test system.

Python and PyMongo

MongoEngine requires python 2.6 (or above) and pymongo 2.5 (or above)

Data Model

Inheritance

The inheritance model has changed, we no longer need to store an array of types with the model we can just use
the classname in _cls. This means that you will have to update your indexes for each of your inherited classes
like so:

1. Declaration of the class
class Animal(Document):

name = StringField()
meta = {

'allow_inheritance': True,
'indexes': ['name']

}

2. Remove _types
collection = Animal._get_collection()
collection.update({}, {"$unset": {"_types": 1}}, multi=True)

3. Confirm extra data is removed
count = collection.find({'_types': {"$exists": True}}).count()
assert count == 0

4. Remove indexes

4.5. Upgrading 67

MongoEngine Documentation, Release 0.8.0

info = collection.index_information()
indexes_to_drop = [key for key, value in info.iteritems()

if '_types' in dict(value['key'])]
for index in indexes_to_drop:

collection.drop_index(index)

5. Recreate indexes
Animal.ensure_indexes()

Document Definition

The default for inheritance has changed - its now off by default and _cls will not be stored automati-
cally with the class. So if you extend your Document or EmbeddedDocuments you will need to declare
allow_inheritance in the meta data like so:

class Animal(Document):
name = StringField()

meta = {'allow_inheritance': True}

Previously, if you had data the database that wasn’t defined in the Document definition, it would set it as an attribute
on the document. This is no longer the case and the data is set only in the document._data dictionary:

>>> from mongoengine import *
>>> class Animal(Document):
... name = StringField()
...
>>> cat = Animal(name="kit", size="small")

0.7
>>> cat.size
u'small'

0.8
>>> cat.size
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: 'Animal' object has no attribute 'size'

ReferenceField

ReferenceFields now store ObjectId’s by default - this is more efficient than DBRefs as we already know what
Document types they reference:

Old code
class Animal(Document):

name = ReferenceField('self')

New code to keep dbrefs
class Animal(Document):

name = ReferenceField('self', dbref=True)

To migrate all the references you need to touch each object and mark it as dirty eg:

Doc definition
class Person(Document):

name = StringField()
parent = ReferenceField('self')
friends = ListField(ReferenceField('self'))

68 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.8.0

Mark all ReferenceFields as dirty and save
for p in Person.objects:

p._mark_as_dirty('parent')
p._mark_as_dirty('friends')
p.save()

An example test migration for ReferenceFields is available on github.

UUIDField

UUIDFields now default to storing binary values:

Old code
class Animal(Document):

uuid = UUIDField()

New code
class Animal(Document):

uuid = UUIDField(binary=False)

To migrate all the uuid’s you need to touch each object and mark it as dirty eg:

Doc definition
class Animal(Document):

uuid = UUIDField()

Mark all ReferenceFields as dirty and save
for a in Animal.objects:

a._mark_as_dirty('uuid')
a.save()

An example test migration for UUIDFields is available on github.

DecimalField

DecimalField now store floats - previous it was storing strings and that made it impossible to do comparisons
when querying correctly.:

Old code
class Person(Document):

balance = DecimalField()

New code
class Person(Document):

balance = DecimalField(force_string=True)

To migrate all the uuid’s you need to touch each object and mark it as dirty eg:

Doc definition
class Person(Document):

balance = DecimalField()

Mark all ReferenceFields as dirty and save
for p in Person.objects:

p._mark_as_dirty('balance')
p.save()

Note: DecimalField’s have also been improved with the addition of precision and rounding. See
DecimalField for more information.

An example test migration for DecimalFields is available on github.

4.5. Upgrading 69

https://github.com/MongoEngine/mongoengine/blob/master/tests/migration/refrencefield_dbref_to_object_id.py
https://github.com/MongoEngine/mongoengine/blob/master/tests/migration/uuidfield_to_binary.py
https://github.com/MongoEngine/mongoengine/blob/master/tests/migration/decimalfield_as_float.py

MongoEngine Documentation, Release 0.8.0

Cascading Saves

To improve performance document saves will no longer automatically cascade. Any changes to a Documents
references will either have to be saved manually or you will have to explicitly tell it to cascade on save:

At the class level:
class Person(Document):

meta = {'cascade': True}

Or on save:
my_document.save(cascade=True)

Storage

Document and Embedded Documents are now serialized based on declared field order. Previously, the data was
passed to mongodb as a dictionary and which meant that order wasn’t guaranteed - so things like $addToSet
operations on EmbeddedDocument could potentially fail in unexpected ways.

If this impacts you, you may want to rewrite the objects using the doc.mark_as_dirty(’field’) pattern
described above. If you are using a compound primary key then you will need to ensure the order is fixed and
match your EmbeddedDocument to that order.

Querysets

Attack of the clones

Querysets now return clones and should no longer be considered editable in place. This brings us in line with how
Django’s querysets work and removes a long running gotcha. If you edit your querysets inplace you will have to
update your code like so:

Old code:
mammals = Animal.objects(type="mammal")
mammals.filter(order="Carnivora") # Returns a cloned queryset that isn't assigned to anything - so this will break in 0.8
[m for m in mammals] # This will return all mammals in 0.8 as the 2nd filter returned a new queryset

Update example a) assign queryset after a change:
mammals = Animal.objects(type="mammal")
carnivores = mammals.filter(order="Carnivora") # Reassign the new queryset so fitler can be applied
[m for m in carnivores] # This will return all carnivores

Update example b) chain the queryset:
mammals = Animal.objects(type="mammal").filter(order="Carnivora") # The final queryset is assgined to mammals
[m for m in mammals] # This will return all carnivores

Len iterates the queryset

If you ever did len(queryset) it previously did a count() under the covers, this caused some unusual issues. As
len(queryset) is most often used by list(queryset) we now cache the queryset results and use that for the length.

This isn’t as performant as a count() and if you aren’t iterating the queryset you should upgrade to use count:

Old code
len(Animal.objects(type="mammal"))

New code
Animal.objects(type="mammal").count())

70 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.8.0

.only() now inline with .exclude()

The behaviour of .only() was highly ambious, now it works in the mirror fashion to .exclude(). Chaining .only()
calls will increase the fields required:

Old code
Animal.objects().only(['type', 'name']).only('name', 'order') # Would have returned just `name`

New code
Animal.objects().only('name')

Note:
Animal.objects().only(['name']).only('order') # Now returns `name` *and* `order`

Client

PyMongo 2.4 came with a new connection client; MongoClient and started the depreciation of the old
Connection. MongoEngine now uses the latest MongoClient for connections. By default operations were
safe but if you turned them off or used the connection directly this will impact your queries.

Querysets

Safe safe has been depreciated in the new MongoClient connection. Please use write_concern instead. As safe
always defaulted as True normally no code change is required. To disable confirmation of the write just pass
{“w”: 0} eg:

Old
Animal(name="Dinasour").save(safe=False)

new code:
Animal(name="Dinasour").save(write_concern={"w": 0})

Write Concern write_options has been replaced with write_concern to bring it inline with pymongo. To up-
grade simply rename any instances where you used the write_option keyword to write_concern like so:

Old code:
Animal(name="Dinasour").save(write_options={"w": 2})

new code:
Animal(name="Dinasour").save(write_concern={"w": 2})

Indexes

Index methods are no longer tied to querysets but rather to the document class. Although Query-
Set._ensure_indexes and QuerySet.ensure_index still exist. They should be replaced with ensure_indexes()
/ ensure_index().

SequenceFields

SequenceField now inherits from BaseField to allow flexible storage of the calculated value. As such MIN
and MAX settings are no longer handled.

4.5. Upgrading 71

http://blog.mongodb.org/post/36666163412/introducing-mongoclient

MongoEngine Documentation, Release 0.8.0

4.5.2 0.6 to 0.7

Cascade saves

Saves will raise a FutureWarning if they cascade and cascade hasn’t been set to True. This is because in 0.8 it will
default to False. If you require cascading saves then either set it in the meta or pass via save eg

At the class level:
class Person(Document):

meta = {'cascade': True}

Or in code:
my_document.save(cascade=True)

Note: Remember: cascading saves do not cascade through lists.

ReferenceFields

ReferenceFields now can store references as ObjectId strings instead of DBRefs. This will become the default in
0.8 and if dbref is not set a FutureWarning will be raised.

To explicitly continue to use DBRefs change the dbref flag to True

class Person(Document):
groups = ListField(ReferenceField(Group, dbref=True))

To migrate to using strings instead of DBRefs you will have to manually migrate

Step 1 - Migrate the model definition
class Group(Document):

author = ReferenceField(User, dbref=False)
members = ListField(ReferenceField(User, dbref=False))

Step 2 - Migrate the data
for g in Group.objects():

g.author = g.author
g.members = g.members
g.save()

item_frequencies

In the 0.6 series we added support for null / zero / false values in item_frequencies. A side effect was to return
keys in the value they are stored in rather than as string representations. Your code may need to be updated to
handle native types rather than strings keys for the results of item frequency queries.

BinaryFields

Binary fields have been updated so that they are native binary types. If you previously were doing str comparisons
with binary field values you will have to update and wrap the value in a str.

4.5.3 0.5 to 0.6

Embedded Documents - if you had a pk field you will have to rename it from _id to pk as pk is no longer a property
of Embedded Documents.

Reverse Delete Rules in Embedded Documents, MapFields and DictFields now throw an InvalidDocument error
as they aren’t currently supported.

72 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.8.0

Document._get_subclasses - Is no longer used and the class method has been removed.

Document.objects.with_id - now raises an InvalidQueryError if used with a filter.

FutureWarning - A future warning has been added to all inherited classes that don’t define
allow_inheritance in their meta.

You may need to update pyMongo to 2.0 for use with Sharding.

4.5.4 0.4 to 0.5

There have been the following backwards incompatibilities from 0.4 to 0.5. The main areas of changed are:
choices in fields, map_reduce and collection names.

Choice options:

Are now expected to be an iterable of tuples, with the first element in each tuple being the actual value to be stored.
The second element is the human-readable name for the option.

PyMongo / MongoDB

map reduce now requires pymongo 1.11+- The pymongo merge_output and reduce_output parameters, have been
depreciated.

More methods now use map_reduce as db.eval is not supported for sharding as such the following have been
changed:

• sum()

• average()

• item_frequencies()

Default collection naming

Previously it was just lowercase, its now much more pythonic and readable as its lowercase and underscores,
previously

class MyAceDocument(Document):
pass

MyAceDocument._meta['collection'] == myacedocument

In 0.5 this will change to

class MyAceDocument(Document):
pass

MyAceDocument._get_collection_name() == my_ace_document

To upgrade use a Mixin class to set meta like so

class BaseMixin(object):
meta = {

'collection': lambda c: c.__name__.lower()
}

class MyAceDocument(Document, BaseMixin):
pass

MyAceDocument._get_collection_name() == "myacedocument"

4.5. Upgrading 73

MongoEngine Documentation, Release 0.8.0

Alternatively, you can rename your collections eg

from mongoengine.connection import _get_db
from mongoengine.base import _document_registry

def rename_collections():
db = _get_db()

failure = False

collection_names = [d._get_collection_name()
for d in _document_registry.values()]

for new_style_name in collection_names:
if not new_style_name: # embedded documents don't have collections

continue
old_style_name = new_style_name.replace('_', '')

if old_style_name == new_style_name:
continue # Nothing to do

existing = db.collection_names()
if old_style_name in existing:

if new_style_name in existing:
failure = True
print "FAILED to rename: %s to %s (already exists)" % (

old_style_name, new_style_name)
else:

db[old_style_name].rename(new_style_name)
print "Renamed: %s to %s" % (old_style_name,

new_style_name)

if failure:
print "Upgrading collection names failed"

else:
print "Upgraded collection names"

mongodb 1.8 > 2.0 +

Its been reported that indexes may need to be recreated to the newer version of indexes. To do this drop indexes
and call ensure_indexes on each model.

4.6 Django Support

Note: Updated to support Django 1.5

4.6.1 Connecting

In your settings.py file, ignore the standard database settings (unless you also plan to use the ORM in your
project), and instead call connect() somewhere in the settings module.

Note: If you are not using another Database backend you may need to add a dummy database backend to
settings.py eg:

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.dummy'

74 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.8.0

}
}

4.6.2 Authentication

MongoEngine includes a Django authentication backend, which uses MongoDB. The User model is a Mongo-
Engine Document, but implements most of the methods and attributes that the standard Django User model
does - so the two are moderately compatible. Using this backend will allow you to store users in MongoDB but
still use many of the Django authentication infrastucture (such as the login_required() decorator and the
authenticate() function). To enable the MongoEngine auth backend, add the following to you settings.py
file:

AUTHENTICATION_BACKENDS = (
'mongoengine.django.auth.MongoEngineBackend',

)

The auth module also contains a get_user() helper function, that takes a user’s id and returns a User
object.

New in version 0.1.3.

4.6.3 Custom User model

Django 1.5 introduced Custom user Models <https://docs.djangoproject.com/en/dev/topics/auth/customizing/#auth-
custom-user> which can be used as an alternative the Mongoengine authentication backend.

The main advantage of this option is that other components relying on django.contrib.auth and supporting
the new swappable user model are more likely to work. For example, you can use the createsuperuser
management command as usual.

To enable the custom User model in Django, add ’mongoengine.django.mongo_auth’ in your
INSTALLED_APPS and set ’mongo_auth.MongoUser’ as the custom user user model to use. In your
settings.py file you will have:

INSTALLED_APPS = (
...
'django.contrib.auth',
'mongoengine.django.mongo_auth',
...

)

AUTH_USER_MODEL = 'mongo_auth.MongoUser'

An additional MONGOENGINE_USER_DOCUMENT setting enables you to replace the User class with another
class of your choice:

MONGOENGINE_USER_DOCUMENT = 'mongoengine.django.auth.User'

The custom User must be a Document class, but otherwise has the same require-
ments as a standard custom user model, as specified in the Django Documentation
<https://docs.djangoproject.com/en/dev/topics/auth/customizing/>. In particular, the custom class must
define USERNAME_FIELD and REQUIRED_FIELDS attributes.

4.6.4 Sessions

Django allows the use of different backend stores for its sessions. MongoEngine provides a
MongoDB-based session backend for Django, which allows you to use sessions in you Django
application with just MongoDB. To enable the MongoEngine session backend, ensure that your

4.6. Django Support 75

MongoEngine Documentation, Release 0.8.0

settings module has ’django.contrib.sessions.middleware.SessionMiddleware’ in the
MIDDLEWARE_CLASSES field and ’django.contrib.sessions’ in your INSTALLED_APPS. From
there, all you need to do is add the following line into you settings module:

SESSION_ENGINE = 'mongoengine.django.sessions'

Django provides session cookie, which expires after ‘SESSION_COOKIE_AGE‘ seconds, but doesnt delete
cookie at sessions backend, so ’mongoengine.django.sessions’ supports mongodb TTL.

New in version 0.2.1.

4.6.5 Storage

With MongoEngine’s support for GridFS via the FileField, it is useful to have a Django file storage backend
that wraps this. The new storage module is called GridFSStorage. Using it is very similar to using the default
FileSystemStorage.:

from mongoengine.django.storage import GridFSStorage
fs = GridFSStorage()

filename = fs.save('hello.txt', 'Hello, World!')

All of the Django Storage API methods have been implemented except path(). If the filename provided already
exists, an underscore and a number (before # the file extension, if one exists) will be appended to the filename
until the generated filename doesn’t exist. The save() method will return the new filename.:

>>> fs.exists('hello.txt')
True
>>> fs.open('hello.txt').read()
'Hello, World!'
>>> fs.size('hello.txt')
13
>>> fs.url('hello.txt')
'http://your_media_url/hello.txt'
>>> fs.open('hello.txt').name
'hello.txt'
>>> fs.listdir()
([], [u'hello.txt'])

All files will be saved and retrieved in GridFS via the :class::FileDocument document, allowing easy access to the
files without the GridFSStorage backend.:

>>> from mongoengine.django.storage import FileDocument
>>> FileDocument.objects()
[<FileDocument: FileDocument object>]

New in version 0.4.

76 Chapter 4. Offline Reading

http://docs.mongodb.org/manual/tutorial/expire-data/
http://docs.djangoproject.com/en/dev/ref/files/storage/

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

77

MongoEngine Documentation, Release 0.8.0

78 Chapter 5. Indices and tables

Index

Symbols
__call__() (mongoengine.queryset.QuerySet method),

42

A
all() (mongoengine.queryset.QuerySet method), 43
all_fields() (mongoengine.queryset.QuerySet method),

43
as_pymongo() (mongoengine.queryset.QuerySet

method), 43
average() (mongoengine.queryset.QuerySet method),

43

B
BinaryField (class in mongoengine.fields), 52
BooleanField (class in mongoengine.fields), 50

C
cascade_save() (mongoengine.Document method), 39
clone() (mongoengine.queryset.QuerySet method), 43
ComplexDateTimeField (class in mongoengine.fields),

50
connect() (in module mongoengine), 38
count() (mongoengine.queryset.QuerySet method), 43
create() (mongoengine.queryset.QuerySet method), 43

D
DateTimeField (class in mongoengine.fields), 50
DecimalField (class in mongoengine.fields), 49
delete() (mongoengine.Document method), 39
delete() (mongoengine.queryset.QuerySet method), 43
DictField (class in mongoengine.fields), 51
distinct() (mongoengine.queryset.QuerySet method),

43
Document (class in mongoengine), 38
drop_collection() (mongoengine.Document class

method), 39
DynamicDocument (class in mongoengine), 41
DynamicEmbeddedDocument (class in mongoengine),

41
DynamicField (class in mongoengine.fields), 50

E
EmailField (class in mongoengine.fields), 49

EmbeddedDocument (class in mongoengine), 40
EmbeddedDocumentField (class in mongo-

engine.fields), 50
ensure_index() (mongoengine.Document class

method), 39
ensure_index() (mongoengine.queryset.QuerySet

method), 43
ensure_indexes() (mongoengine.Document class

method), 39
exclude() (mongoengine.queryset.QuerySet method),

43
exec_js() (mongoengine.queryset.QuerySet method),

44
explain() (mongoengine.queryset.QuerySet method),

44

F
fields() (mongoengine.queryset.QuerySet method), 44
FileField (class in mongoengine.fields), 52
filter() (mongoengine.queryset.QuerySet method), 44
first() (mongoengine.queryset.QuerySet method), 44
FloatField (class in mongoengine.fields), 49
from_json() (mongoengine.queryset.QuerySet

method), 44

G
GenericEmbeddedDocumentField (class in mongo-

engine.fields), 50
GenericReferenceField (class in mongoengine.fields),

52
GeoPointField (class in mongoengine.fields), 53
get() (mongoengine.queryset.QuerySet method), 44
get_or_create() (mongoengine.queryset.QuerySet

method), 45
GridFSError (class in mongoengine.fields), 54
GridFSProxy (class in mongoengine.fields), 54

H
hint() (mongoengine.queryset.QuerySet method), 45

I
ImageField (class in mongoengine.fields), 52
ImageGridFsProxy (class in mongoengine.fields), 54
ImproperlyConfigured (class in mongoengine.fields),

54

79

MongoEngine Documentation, Release 0.8.0

in_bulk() (mongoengine.queryset.QuerySet method),
45

insert() (mongoengine.queryset.QuerySet method), 45
IntField (class in mongoengine.fields), 49
item_frequencies() (mongoengine.queryset.QuerySet

method), 46

L
limit() (mongoengine.queryset.QuerySet method), 46
LineStringField (class in mongoengine.fields), 53
ListField (class in mongoengine.fields), 50
LongField (class in mongoengine.fields), 49

M
map_reduce() (mongoengine.queryset.QuerySet

method), 46
MapField (class in mongoengine.fields), 51
MapReduceDocument (class in mongo-

engine.document), 41
my_metaclass (mongoengine.Document attribute), 39
my_metaclass (mongoengine.DynamicDocument at-

tribute), 41
my_metaclass (mongo-

engine.DynamicEmbeddedDocument at-
tribute), 41

my_metaclass (mongoengine.EmbeddedDocument at-
tribute), 41

N
next() (mongoengine.queryset.QuerySet method), 46
no_dereference (class in mongo-

engine.context_managers), 42
no_dereference() (mongoengine.queryset.QuerySet

method), 46
no_sub_classes() (mongoengine.queryset.QuerySet

method), 46
none() (mongoengine.queryset.QuerySet method), 47

O
object (mongoengine.document.MapReduceDocument

attribute), 41
ObjectIdField (class in mongoengine.fields), 52
objects (Document attribute), 39
only() (mongoengine.queryset.QuerySet method), 47
order_by() (mongoengine.queryset.QuerySet method),

47

P
PointField (class in mongoengine.fields), 53
PolygonField (class in mongoengine.fields), 53

Q
query_counter (class in mongo-

engine.context_managers), 42
QuerySet (class in mongoengine.queryset), 42
queryset_manager() (in module mongo-

engine.queryset), 49

R
read_preference() (mongoengine.queryset.QuerySet

method), 47
ReferenceField (class in mongoengine.fields), 51
register_connection() (in module mongoengine), 38
register_delete_rule() (mongoengine.Document class

method), 39
reload() (mongoengine.Document method), 39
rewind() (mongoengine.queryset.QuerySet method), 47

S
save() (mongoengine.Document method), 39
scalar() (mongoengine.queryset.QuerySet method), 47
select_related() (mongoengine.Document method), 40
select_related() (mongoengine.queryset.QuerySet

method), 47
SequenceField (class in mongoengine.fields), 52
skip() (mongoengine.queryset.QuerySet method), 47
slave_okay() (mongoengine.queryset.QuerySet

method), 47
snapshot() (mongoengine.queryset.QuerySet method),

48
SortedListField (class in mongoengine.fields), 51
StringField (class in mongoengine.fields), 49
sum() (mongoengine.queryset.QuerySet method), 48
switch_collection() (mongoengine.Document method),

40
switch_db (class in mongoengine.context_managers),

42
switch_db() (mongoengine.Document method), 40

T
timeout() (mongoengine.queryset.QuerySet method),

48
to_dbref() (mongoengine.Document method), 40
to_dict() (mongoengine.ValidationError method), 41
to_json() (mongoengine.queryset.QuerySet method),

48

U
update() (mongoengine.Document method), 40
update() (mongoengine.queryset.QuerySet method), 48
update_one() (mongoengine.queryset.QuerySet

method), 48
URLField (class in mongoengine.fields), 49
UUIDField (class in mongoengine.fields), 53

V
ValidationError (class in mongoengine), 41
values_list() (mongoengine.queryset.QuerySet

method), 48

W
where() (mongoengine.queryset.QuerySet method), 48
with_id() (mongoengine.queryset.QuerySet method),

48

80 Index

	Community
	Contributing
	Changes
	Offline Reading
	Tutorial
	User Guide
	API Reference
	Changelog
	Upgrading
	Django Support

	Indices and tables

